DAQ based Impedance Measurement System for Low Cost and Portable Electrical Cell-Substrate Impedance Sensing


Electric cell-substrate impedance sensing (ECIS), a technique for label-free and real-time detection of cells, is emerging as an alternative or assistive method to traditional biochemical assays for diagnostic and pharmaceutical applications. In this work, we developed a DAQ based impedance measurement system for low cost and portable ECIS applications. The alternating input signal for ECIS was generated from the digital-to-analog converter (DAC) channel of the DAQ board and applied through the current limited resistor to the cells on the electrode. The responding signal was recorded by the analog-to-digital converter (ADC) channel of the DAQ board, and its amplitude and phase were analyzed by software lock-in amplifier. The feasibility of the developed ECIS system was evaluated by impedance measurement and DAPI analysis of C2C12 cell growth on the indium tin oxide microelectrode, and by impedimetric and MTT cell viability assay of HEK293 cells exposed to H2O2.

This is a preview of subscription content, access via your institution.


  1. 1.

    Giaever, I. & Keese, C.R. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl. Acad. Sci. U S A 81, 3761–3764 (1984).

    CAS  Article  Google Scholar 

  2. 2.

    Giaever, I. & Keese, C.R. A morphological biosensor for mammalian cells. Nature 366, 591–592 (1993).

    CAS  Article  Google Scholar 

  3. 3.

    Lee, G.H., Pyun, J.C. & Cho, S. Electrical impedance characterization of cell growth on interdigitated microelectrode array. J. Nanosci. Nanotechnol. 14, 8342–8346 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Qiu, Y., Liao, R. & Zhang, X. Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cellsubstrate impedance sensing. Anal. Chem. 80, 990–996 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Xiao, C., Lachance, B., Sunahara, G. & Luong, J.H. An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells. Anal. Chem. 74, 1333–1339 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    Luong, J.H. et al. Monitoring motility, spreading, and mortality of adherent insect cells using an impedance sensor. Anal. Chem. 73, 1844–1848 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    Tran, T.B., Cho, S. & Min, J. Hydrogel-based diffusion chip with Electric Cell-substrate Impedance Sensing (ECIS) integration for cell viability assay and drug toxicity screening. Biosens. Bioelectron. 50, 453–459 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Arndt, S., Seebach, J., Psathaki, K., Galla, H.J. & Wegener, J. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens. Bioelectron. 19, 583–594 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    Qiu, Y., Liao, R. & Zhang, X. Impedance-based mon itoring of ongoing cardiomyocyte death induced by tumor necrosis factor-alpha. Biophys. J. 96, 1985–1991 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    McCoy, M.H. & Wang, E. Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in realtime. J. Virol. Methods 130, 157–161 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Angstmann, M., Brinkmann, I., Bieback, K., Breitkreutz, D. & Maercker, C. Monitoring human mesenchymal stromal cell differentiation by electrochemical impedance sensing. Cytotherapy 13, 1074–1089 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Park, H.E. et al. Real-time monitoring of neural differentiation of human mesenchymal stem cells by electric cell-substrate impedance sensing. J. Biomed. Biotechnol. 2011, 485173 (2011).

    Google Scholar 

  13. 13.

    Bagnaninchi, P.O. & Drummond, N. Real-time labelfree monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing. Proc. Natl. Acad. Sci. U S A 108, 6462–6467 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Szulcek, R., Bogaard, H.J. & van Nieuw Amerongen, G.P. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility. J. Vis. Exp. 85, e51300 (2014).

    Google Scholar 

  15. 15.

    Yang, L. & Li, Y. AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium-tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7. Biosens. Bioelectron. 20, 1407–1416 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    Tiruppathi, C., Malik, A.B., Del Vecchio, P.J., Keese, C.R. & Giaever, I. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc. Natl. Acad. Sci. U S A 89, 7919–7923 (1992).

    CAS  Article  Google Scholar 

  17. 17.

    Brischwein, M. et al. Electric cell-substrate impedance sensing with screen printed electrode structures. Lab Chip 6, 819–822 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    Price, D.T., Rahman, A.R.A. & Bhansali, S. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS). Biosens. Bioelectron. 24, 2071–2076 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    Wegener, J., Keese, C.R. & Giaever, I. Electric Cell-Substrate Impedance Sensing (ECIS) as a Noninvasive Means to Monitor the Kinetics of Cell Spreading to Artificial Surfaces. Exp. Cell Res. 259, 158–166 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    Pradhan, R., Mitra, A. & Das, S. Impedimetric characterization of human blood using three-electrode based ECIS devices. J. Electr. Bioimpedance 3, 12–19 (2012).

    Google Scholar 

  21. 21.

    Cho, S. Electrical impedance analysis of cell growth using a parallel RC circuit model. BioChip J. 5, 327–332 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Angelini, E. et al. Handheld-impedance-measurement system with seven-decade capability and potentiostatic function. IEEE Trans. Instrum. Meas. 55, 436–441 (2006).

    Article  Google Scholar 

  23. 23.

    Yang, Y., Wang, J., Yu, G., Niu, F. & He, P. Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy. Physiol. Meas. 27, 1293–1310 (2006).

    Article  Google Scholar 

  24. 24.

    Jun, H.S., Choi, W., Kim, J.Y. & Cho, S. Electrical impedance characterization of adipose tissue-derived stem cells cultured on indium tin oxide electrodes. J. Biomed. Nanotechnol. 9, 699–702 (2013).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sungbo Cho.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, IH., Hong, Y., Jun, HS. et al. DAQ based Impedance Measurement System for Low Cost and Portable Electrical Cell-Substrate Impedance Sensing. BioChip J 12, 18–24 (2018). https://doi.org/10.1007/s13206-017-2103-1

Download citation


  • Cell viability assay
  • DAQ
  • Electric cell-substrate impedance sensing
  • Indium tin oxide electrode
  • Software lock-in amplifier