Paper-Based Biochip Assays and Recent Developments: A Review

Abstract

Biomolecules in human body serve as biomarker for diagnosis of diseases, and paper-based biochips have become of much interest for development of biomolecule sensing. Cellulose micro-/nanofiber matrices consisting of paper allow not only capillary-driven flow without external pumping owing to abundant micro-/nanopores but also three-dimensional (3D) hierarchical micro-/nanostructures as 3D templates for microfluidic bioassays. Besides, colloidal and thermal evaporated metal nanoparticles on cellulose fibers offer huge opportunities in nanoplasmonic biosensing. Here, we review paper-based biochips including microfluidic paper-based assays and nanoplasmonic biosensors and further discuss micro-/nanofabrication of paper-based biochips and their applications in biomolecule detection.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Milne, J.C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–726 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    Oh, Y.-J. & Jeong, K.-H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 24, 2234–2237 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Camilli, A. & Bassler, B.L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    Lucock, M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol. Genet. Metab. 71, 121–138 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    Hu, C. et al. Fabrication of reduced graphene oxide and silver nanoparticle hybrids for Raman detection of absorbed folic acid: a potential cancer diagnostic probe. ACS Appl. Mater. Interfaces 5, 4760–4768 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Nicholson, J.K. & London, J.C. Systems biology: metabonomics. Nature 455, 1054–1056 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Qui, A. et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127, 917–928 (2006).

    Article  Google Scholar 

  8. 8.

    Hong, C.C. & Yu, P.B. Application of small molecule BMP inhibitors in physiology and disease. Cytokine Growth Factor Rev. 20, 409–418 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Dehghan, A. et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372, 1953–1961 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Park, M., Jung, H., Jeong, Y. & Jeong, K.-H. Plasmonic Schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 11, 438–443 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Choy, C.K.M., Benzie, I.F.F. & Cho, P. Ascorbic acid concentration and total antioxidant activity of human tear fluid measured using the FRASC assay. Innest. Ophthalmol. Visual Sci. 41, 3293–3298 (2000).

    CAS  Google Scholar 

  12. 12.

    Kim, E.-J. et al. Glucose metabolism in sporadic Creutzfeldt-Jakob disease: an SPM analysis of F-FDG PET. Eur J. Neurol. 19, 488–493 (2012).

    Article  Google Scholar 

  13. 13.

    Hestrin, S. & Schramm, M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biomed. J. 58, 345–352 (1954).

    CAS  Google Scholar 

  14. 14.

    Masaoka, S., Ohe, T. & Sakota, N. Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 75, 18–22 (1993).

    CAS  Article  Google Scholar 

  15. 15.

    Shin, J.H., Park, J., Kim, S.H. & Park, J.-K. Programmed sample delivery on a pressurized paper. Biomicrofluidics 8, 054121 (2014).

    Article  Google Scholar 

  16. 16.

    Martinez, A.W., Phillips, S.T. & Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. U. S. A. 105, 19606–19611 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    Yu, J., Ge, L., Huang, J., Wang, S. & Ge, S. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11, 1286–1291 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Shin, J.H. & Park, J.-K. Functional packaging of lateral flow strip allows simple delivery of multiple reagents for multistep assays. Anal. Chem. 88, 10374–10378 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Teerinen, T., Lappalainen, T. & Erho, T. A paper-based lateral flow assay for morphine. Anal. Bioanal. Chem. 406, 5955–5965 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Miao, J. et al. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32, 9557–9567 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Yang, J. et al. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J. Hazard. Mater. 189, 377–384 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Wilcox, A.J., Baird, D.D. & Weinberg, C.R. Time of implantation of the conceptus and loss of pregnancy. N. Engl. J. Med. 340, 1796–1799 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    Russo, A. et al. Pen-on-paper flexible electronics. Adv. Mater. 23, 3426–3430 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Polavarapu, L., Porta, A.L., Novikov, S.M., Coronado-Puchau, M. & Liz-Marzán, L.M. Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates. Small 10, 3065–3071 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Lee, C.H., Hankus, M.E., Tian, L., Pellegrino, P.M. & Singamaneni, S. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal. Chem. 83, 8953–8958 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Yu, W.W. and White, I.M. Chromatographic separation and detection of target analytes from complex samples using inkjet-printed SERS substrates. Analyst 138, 3679–3686 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Yu, W.W. and White, I.M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138, 1020–1025 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Liu, H. and Crooks, R.M. Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc. 133, 17564–17566 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Liu, H., Siang, Y., Lu, Y. & Crooks, R.M. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew. Chem. Int. Ed. 51, 6925–6928 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Martinez, R.V., Fish, C.R., Chen, X. & Whitesides, G.M. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376–1384 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Ge, L., Wang, S., Song, X., Ge, S. & Yu, J. 3D origamibased multifunction-integrated immunodevice: lowcost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12, 3150–3158 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Dungchai, W., Chailapakul, O. & Henry, C.S. A lowcost, simple, and rapid fabrication method for paperbased microfluidics using wax screen-printing. Analyst 136, 77–82 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Lu, Y., Shi, W., Jiang, L., Qin, J. & Lin, B. Rapid prototyping of paper-based microfluidics with wax for lowcost, portable bioassay. Electrophoresis 30, 1497–1500 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    Carrilho, E., Martinez, A.W., Whitesides, G.M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091–7095 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    Lewis, G.G., DiTucci, M.J., Baker, M.S. & Phillips, S.T. High throughput method for prototyping threedimensional, paper-based microfluidic devices. Lab Chip 12, 2630–2633 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Lu, Y., Shi, W., Qin, J. & Lin, B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal. Chem. 82, 329–335 (2010).

    Article  Google Scholar 

  37. 37.

    Martinez, A.W. et al. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80, 3699–3707 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    Park, J. & Park, J.-K. Pressed region integrated 3D paper-based microfluidic device that enables vertical flow multistep assays for the detection of C-reactive protein based on programmed reagent loading. Sens. Actuators B 246, 1049–1055 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Oh, Y., Lee, H., Son, S.Y., Kim, S.J. & Kim, P. Capililarity ion concentration polarization for spontaneous biomolecular preconcentration mechnism. Biomicrofluidics 10, 014102 (2016).

    Article  Google Scholar 

  40. 40.

    Kong, M., Shin, J.H., Heu, S., Park, J.-K. & Ryu, S. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Biosens. Bioelectron. 96, 173–177 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Raston, N.H.A., Nguyen, V.T. & Gu, M.B. A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosensors and Bioelectronics 93, 21–25 (2017).

    Article  Google Scholar 

  42. 42.

    Hwang, J., Lee, S., Choo, J. Application of a SERSbased lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enteroxin B. Nanoscale 8, 11418 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Park, J., Shin, J.H. & Park, J.-K. Experimental analysis of porosity and permeability in pressed paper. Micromachines 7, 48 (2016).

    Article  Google Scholar 

  44. 44.

    Park, J., Shin, J.H. & Park, J.-K. Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions. Anal. Chem. 88, 3781–3788 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Delaney, J.L. & Hogan, C.F., Tian, J. & Shen, W. Electrogenerated chemiluminescence detection in paperbased microfluidic sensors. Anal. Chem. 83, 1300–1306 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Ge, L., Yu, J., Ge, S. & Yan, M. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal. Bioanal. Chem. 31, 212–218 (2012).

    Google Scholar 

  47. 47.

    Wang, S. et al. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 31, 212–218 (2012).

    Article  Google Scholar 

  48. 48.

    Fletcher, J. Filter-paper dot-immunobinding assay for detection of spiroplasma-citri. Appl. Environ. Microbiol. 53, 183–184 (1987).

    CAS  Google Scholar 

  49. 49.

    Heberling, R.L. & Kalter, S.S. Rapid dot-immunobinding assay on nitrocellulose for viral antibodies. J. Clin. Microbiol. 23, 109–113 (1986).

    CAS  Google Scholar 

  50. 50.

    Yoon, H.-J., Lee, E.-S., Kang, M., Jeong, Y. & Park, J.-H. In vivo multi-photon luminescence imaging of cerebral vasculature and blood-brain barrier integrity using gold nanoparticles. J. Mater. Chem. B 3, 2935–2938 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    Stiles, P.L., Dieringer, J.A., Shah, N.C. & Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    CAS  Article  Google Scholar 

  52. 52.

    Chang, T.-W. et al. Bifunctional nano lycurgus cup array plasmonic sensor for colorimetric sensing and surface-enhanced Raman spectroscopy. Adv. Opt. Mater. 3, 1397–1404 (2015).

    CAS  Article  Google Scholar 

  53. 53.

    Seok, T.J., Jamshidi, A., Eggleston, M. & Wu, M.C. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap. Opt. Exp. 21, 16561–16569 (2013).

    Article  Google Scholar 

  54. 54.

    Chen, H., Kou, X., Yang, Z., Ni, W. & Wang, J. Shapeand size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24, 5233–5237 (2008).

    CAS  Article  Google Scholar 

  55. 55.

    Lei, D.Y. et al. Geometry dependence of surface plasmon polarition lifetimes in nanohole arrays. ACS Nano 4, 432–438 (2010).

    CAS  Article  Google Scholar 

  56. 56.

    Jensen, T.R. et al. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 103, 9846–9853 (1999).

    CAS  Article  Google Scholar 

  57. 57.

    Zhang, J. et al. Single-cell fluorescence imaging using metal plasmon-coupled probe 2: single-molecule counting on lifetime image. Nano Lett. 8, 1179–1186 (2009).

    CAS  Article  Google Scholar 

  58. 58.

    Sugawa, K. et al. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects. ACS Nano 7, 9997–10010 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    Hong, S.G., Lee, M.Y., Jackson, A.O. & Lee, L.P. Bioinspired optical antennas: gold plant viruses. Light: Sci. Appl. 4, e267 (2015).

    CAS  Article  Google Scholar 

  60. 60.

    Park, M., Oh, Y.-J., Park, S.-G., Yang, S.-B. & Jeong, K.-H. Electrokinetic preconcentration of small molecules within volumetric electromagnetic hotspots in surface-enhanced Raman scattering. Small 11, 2487–2492 (2015).

    CAS  Article  Google Scholar 

  61. 61.

    Wu, D. & Fang, Y. The adsorption behavior of p-hydroxybenzoic acid on a silver-coated filter paper by surface enhanced Raman scattering. J. Colloid Interface Sci. 265, 234–238 (2003).

    CAS  Article  Google Scholar 

  62. 62.

    Luo, Z. and Fang, Y. SERS of C60/C70 on gold-coated filter paper on filter film influenced by the gold thickness. J. Colloid Interface Sci. 283, 459–463 (2005).

    CAS  Article  Google Scholar 

  63. 63.

    Zhang, L. et al. Cellulose nanofibre textured SERS substrate. Colloid Surf., A 468, 309–314 (2015).

    CAS  Article  Google Scholar 

  64. 64.

    Ngo, Y.H., Li, D., Simon, G.P. & Garnier, G. Effect of cationic polyacrylamide dissolution on the absorption state of gold nanoparticles on paper and their surface enhanced Raman scattering properties. Colloid Surf., A 420, 46–52 (2013).

    CAS  Article  Google Scholar 

  65. 65.

    Ngo, Y.H., Li, D., Simon, G.P. & Garnier, G. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J. Colloid Interface Sci. 392, 237–246 (2013).

    CAS  Article  Google Scholar 

  66. 66.

    Ngo, Y.H., Then, W.L., Shen, W. & Garnier, G. Gold nanoparticles paper as a SERS bio-diagnostic platform. J. Colloid Interface Sci. 409, 59–65 (2013).

    CAS  Article  Google Scholar 

  67. 67.

    Ballerini, D.R. et al. Gold nanoparticle-functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AIChE J. 60, 1598–1605 (2014).

    CAS  Article  Google Scholar 

  68. 68.

    Tian, L. et al. Bioplasmonic paper as a platform for detection of kidney cancer biomarkers. Anal. Chem. 84, 9928–9934 (2012).

    CAS  Article  Google Scholar 

  69. 69.

    Abbas, A. et al. Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal. Chem. 85, 3977–3983 (2013).

    CAS  Article  Google Scholar 

  70. 70.

    Tadepalli, S. et al. Peptide-functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmoic paper devices. Sci. Rep. 5, 16206 (2015).

    CAS  Article  Google Scholar 

  71. 71.

    Schmucker, A.L. et al. Plasmonic paper: a porous and flexible substrate enabling nanoparticle-based combinatorial chemistry. RSC Adv. 6, 4136–4144 (2016).

    CAS  Article  Google Scholar 

  72. 72.

    Ross, M.B. et al. Structure-function relationships for surface-enhanced Raman spectroscopy-active plasmonic paper. J. Phys. Chem. C 120, 20789–20797 (2016).

    CAS  Article  Google Scholar 

  73. 73.

    Wang, C., Liu, B. & Dou, X. Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sens. Actuators B 231, 357–364 (2016).

    CAS  Article  Google Scholar 

  74. 74.

    Cheng, M.-L., Tsai, B.-C. & Yang, J. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal. Chim. Acta 708, 89–96 (2011).

    CAS  Article  Google Scholar 

  75. 75.

    Rajapandiyan, P. & Yang, J. Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. J. Raman Spectrosc. 45, 574–580 (2014).

    CAS  Article  Google Scholar 

  76. 76.

    Li, Y. et al. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 147, 493–500 (2016).

    CAS  Article  Google Scholar 

  77. 77.

    Zhang, K., Qing, J., Gao, H., Ji, J. & Liu, B. Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis. Talanta 162, 52–56 (2017).

    CAS  Article  Google Scholar 

  78. 78.

    Yu, W.W. & White, I.M. Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal. Chem. 82, 9626–9630 (2010).

    CAS  Article  Google Scholar 

  79. 79.

    Berger, A.G., Restaino, S.M. & White, I.M. Verticalflow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal. Chim. Acta 949, 59–66 (2017).

    CAS  Article  Google Scholar 

  80. 80.

    Zhang, W. et al. Brushing, a simple way to fabricate SERS active paper substrates. Anal. Methods 6, 2066–2071 (2014).

    CAS  Article  Google Scholar 

  81. 81.

    Zhang, K. et al. Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection. ACS Appl. Mater. Interfaces 7, 16767–16774 (2015).

    CAS  Article  Google Scholar 

  82. 82.

    Jung, H., Park, M., Kang, M. & Jeong, K.-H. Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules. Light: Sci. Appl. 5, e16009 (2016).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ki-Hun Jeong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, M., Kang, BH. & Jeong, KH. Paper-Based Biochip Assays and Recent Developments: A Review. BioChip J 12, 1–10 (2018). https://doi.org/10.1007/s13206-017-2101-3

Download citation

Keywords

  • Paper
  • Biosensor
  • Biochip
  • Plasmonics
  • Nanofabrication