BioChip Journal

, Volume 12, Issue 1, pp 1–10 | Cite as

Paper-Based Biochip Assays and Recent Developments: A Review

  • Moonseong Park
  • Byoung-Hoon Kang
  • Ki-Hun Jeong
Review Article


Biomolecules in human body serve as biomarker for diagnosis of diseases, and paper-based biochips have become of much interest for development of biomolecule sensing. Cellulose micro-/nanofiber matrices consisting of paper allow not only capillary-driven flow without external pumping owing to abundant micro-/nanopores but also three-dimensional (3D) hierarchical micro-/nanostructures as 3D templates for microfluidic bioassays. Besides, colloidal and thermal evaporated metal nanoparticles on cellulose fibers offer huge opportunities in nanoplasmonic biosensing. Here, we review paper-based biochips including microfluidic paper-based assays and nanoplasmonic biosensors and further discuss micro-/nanofabrication of paper-based biochips and their applications in biomolecule detection.


Paper Biosensor Biochip Plasmonics Nanofabrication 


  1. 1.
    Milne, J.C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–726 (2007).CrossRefGoogle Scholar
  2. 2.
    Oh, Y.-J. & Jeong, K.-H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 24, 2234–2237 (2012).CrossRefGoogle Scholar
  3. 3.
    Camilli, A. & Bassler, B.L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).CrossRefGoogle Scholar
  4. 4.
    Lucock, M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol. Genet. Metab. 71, 121–138 (2000).CrossRefGoogle Scholar
  5. 5.
    Hu, C. et al. Fabrication of reduced graphene oxide and silver nanoparticle hybrids for Raman detection of absorbed folic acid: a potential cancer diagnostic probe. ACS Appl. Mater. Interfaces 5, 4760–4768 (2013).CrossRefGoogle Scholar
  6. 6.
    Nicholson, J.K. & London, J.C. Systems biology: metabonomics. Nature 455, 1054–1056 (2008).CrossRefGoogle Scholar
  7. 7.
    Qui, A. et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127, 917–928 (2006).CrossRefGoogle Scholar
  8. 8.
    Hong, C.C. & Yu, P.B. Application of small molecule BMP inhibitors in physiology and disease. Cytokine Growth Factor Rev. 20, 409–418 (2009).CrossRefGoogle Scholar
  9. 9.
    Dehghan, A. et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372, 1953–1961 (2008).CrossRefGoogle Scholar
  10. 10.
    Park, M., Jung, H., Jeong, Y. & Jeong, K.-H. Plasmonic Schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 11, 438–443 (2017).CrossRefGoogle Scholar
  11. 11.
    Choy, C.K.M., Benzie, I.F.F. & Cho, P. Ascorbic acid concentration and total antioxidant activity of human tear fluid measured using the FRASC assay. Innest. Ophthalmol. Visual Sci. 41, 3293–3298 (2000).Google Scholar
  12. 12.
    Kim, E.-J. et al. Glucose metabolism in sporadic Creutzfeldt-Jakob disease: an SPM analysis of F-FDG PET. Eur J. Neurol. 19, 488–493 (2012).CrossRefGoogle Scholar
  13. 13.
    Hestrin, S. & Schramm, M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biomed. J. 58, 345–352 (1954).Google Scholar
  14. 14.
    Masaoka, S., Ohe, T. & Sakota, N. Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 75, 18–22 (1993).CrossRefGoogle Scholar
  15. 15.
    Shin, J.H., Park, J., Kim, S.H. & Park, J.-K. Programmed sample delivery on a pressurized paper. Biomicrofluidics 8, 054121 (2014).CrossRefGoogle Scholar
  16. 16.
    Martinez, A.W., Phillips, S.T. & Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. U. S. A. 105, 19606–19611 (2008).CrossRefGoogle Scholar
  17. 17.
    Yu, J., Ge, L., Huang, J., Wang, S. & Ge, S. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11, 1286–1291 (2011).CrossRefGoogle Scholar
  18. 18.
    Shin, J.H. & Park, J.-K. Functional packaging of lateral flow strip allows simple delivery of multiple reagents for multistep assays. Anal. Chem. 88, 10374–10378 (2016).CrossRefGoogle Scholar
  19. 19.
    Teerinen, T., Lappalainen, T. & Erho, T. A paper-based lateral flow assay for morphine. Anal. Bioanal. Chem. 406, 5955–5965 (2014).CrossRefGoogle Scholar
  20. 20.
    Miao, J. et al. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32, 9557–9567 (2011).CrossRefGoogle Scholar
  21. 21.
    Yang, J. et al. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J. Hazard. Mater. 189, 377–384 (2011).CrossRefGoogle Scholar
  22. 22.
    Wilcox, A.J., Baird, D.D. & Weinberg, C.R. Time of implantation of the conceptus and loss of pregnancy. N. Engl. J. Med. 340, 1796–1799 (1999).CrossRefGoogle Scholar
  23. 23.
    Russo, A. et al. Pen-on-paper flexible electronics. Adv. Mater. 23, 3426–3430 (2011).CrossRefGoogle Scholar
  24. 24.
    Polavarapu, L., Porta, A.L., Novikov, S.M., Coronado-Puchau, M. & Liz-Marzán, L.M. Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates. Small 10, 3065–3071 (2014).CrossRefGoogle Scholar
  25. 25.
    Lee, C.H., Hankus, M.E., Tian, L., Pellegrino, P.M. & Singamaneni, S. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal. Chem. 83, 8953–8958 (2011).CrossRefGoogle Scholar
  26. 26.
    Yu, W.W. and White, I.M. Chromatographic separation and detection of target analytes from complex samples using inkjet-printed SERS substrates. Analyst 138, 3679–3686 (2013).CrossRefGoogle Scholar
  27. 27.
    Yu, W.W. and White, I.M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138, 1020–1025 (2013).CrossRefGoogle Scholar
  28. 28.
    Liu, H. and Crooks, R.M. Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc. 133, 17564–17566 (2011).CrossRefGoogle Scholar
  29. 29.
    Liu, H., Siang, Y., Lu, Y. & Crooks, R.M. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew. Chem. Int. Ed. 51, 6925–6928 (2012).CrossRefGoogle Scholar
  30. 30.
    Martinez, R.V., Fish, C.R., Chen, X. & Whitesides, G.M. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376–1384 (2012).CrossRefGoogle Scholar
  31. 31.
    Ge, L., Wang, S., Song, X., Ge, S. & Yu, J. 3D origamibased multifunction-integrated immunodevice: lowcost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12, 3150–3158 (2012).CrossRefGoogle Scholar
  32. 32.
    Dungchai, W., Chailapakul, O. & Henry, C.S. A lowcost, simple, and rapid fabrication method for paperbased microfluidics using wax screen-printing. Analyst 136, 77–82 (2011).CrossRefGoogle Scholar
  33. 33.
    Lu, Y., Shi, W., Jiang, L., Qin, J. & Lin, B. Rapid prototyping of paper-based microfluidics with wax for lowcost, portable bioassay. Electrophoresis 30, 1497–1500 (2009).CrossRefGoogle Scholar
  34. 34.
    Carrilho, E., Martinez, A.W., Whitesides, G.M. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091–7095 (2009).CrossRefGoogle Scholar
  35. 35.
    Lewis, G.G., DiTucci, M.J., Baker, M.S. & Phillips, S.T. High throughput method for prototyping threedimensional, paper-based microfluidic devices. Lab Chip 12, 2630–2633 (2012).CrossRefGoogle Scholar
  36. 36.
    Lu, Y., Shi, W., Qin, J. & Lin, B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal. Chem. 82, 329–335 (2010).CrossRefGoogle Scholar
  37. 37.
    Martinez, A.W. et al. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80, 3699–3707 (2008).CrossRefGoogle Scholar
  38. 38.
    Park, J. & Park, J.-K. Pressed region integrated 3D paper-based microfluidic device that enables vertical flow multistep assays for the detection of C-reactive protein based on programmed reagent loading. Sens. Actuators B 246, 1049–1055 (2017).CrossRefGoogle Scholar
  39. 39.
    Oh, Y., Lee, H., Son, S.Y., Kim, S.J. & Kim, P. Capililarity ion concentration polarization for spontaneous biomolecular preconcentration mechnism. Biomicrofluidics 10, 014102 (2016).CrossRefGoogle Scholar
  40. 40.
    Kong, M., Shin, J.H., Heu, S., Park, J.-K. & Ryu, S. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Biosens. Bioelectron. 96, 173–177 (2017).CrossRefGoogle Scholar
  41. 41.
    Raston, N.H.A., Nguyen, V.T. & Gu, M.B. A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosensors and Bioelectronics 93, 21–25 (2017).CrossRefGoogle Scholar
  42. 42.
    Hwang, J., Lee, S., Choo, J. Application of a SERSbased lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enteroxin B. Nanoscale 8, 11418 (2016).CrossRefGoogle Scholar
  43. 43.
    Park, J., Shin, J.H. & Park, J.-K. Experimental analysis of porosity and permeability in pressed paper. Micromachines 7, 48 (2016).CrossRefGoogle Scholar
  44. 44.
    Park, J., Shin, J.H. & Park, J.-K. Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions. Anal. Chem. 88, 3781–3788 (2016).CrossRefGoogle Scholar
  45. 45.
    Delaney, J.L. & Hogan, C.F., Tian, J. & Shen, W. Electrogenerated chemiluminescence detection in paperbased microfluidic sensors. Anal. Chem. 83, 1300–1306 (2011).CrossRefGoogle Scholar
  46. 46.
    Ge, L., Yu, J., Ge, S. & Yan, M. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal. Bioanal. Chem. 31, 212–218 (2012).Google Scholar
  47. 47.
    Wang, S. et al. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 31, 212–218 (2012).CrossRefGoogle Scholar
  48. 48.
    Fletcher, J. Filter-paper dot-immunobinding assay for detection of spiroplasma-citri. Appl. Environ. Microbiol. 53, 183–184 (1987).Google Scholar
  49. 49.
    Heberling, R.L. & Kalter, S.S. Rapid dot-immunobinding assay on nitrocellulose for viral antibodies. J. Clin. Microbiol. 23, 109–113 (1986).Google Scholar
  50. 50.
    Yoon, H.-J., Lee, E.-S., Kang, M., Jeong, Y. & Park, J.-H. In vivo multi-photon luminescence imaging of cerebral vasculature and blood-brain barrier integrity using gold nanoparticles. J. Mater. Chem. B 3, 2935–2938 (2015).CrossRefGoogle Scholar
  51. 51.
    Stiles, P.L., Dieringer, J.A., Shah, N.C. & Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).CrossRefGoogle Scholar
  52. 52.
    Chang, T.-W. et al. Bifunctional nano lycurgus cup array plasmonic sensor for colorimetric sensing and surface-enhanced Raman spectroscopy. Adv. Opt. Mater. 3, 1397–1404 (2015).CrossRefGoogle Scholar
  53. 53.
    Seok, T.J., Jamshidi, A., Eggleston, M. & Wu, M.C. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap. Opt. Exp. 21, 16561–16569 (2013).CrossRefGoogle Scholar
  54. 54.
    Chen, H., Kou, X., Yang, Z., Ni, W. & Wang, J. Shapeand size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24, 5233–5237 (2008).CrossRefGoogle Scholar
  55. 55.
    Lei, D.Y. et al. Geometry dependence of surface plasmon polarition lifetimes in nanohole arrays. ACS Nano 4, 432–438 (2010).CrossRefGoogle Scholar
  56. 56.
    Jensen, T.R. et al. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 103, 9846–9853 (1999).CrossRefGoogle Scholar
  57. 57.
    Zhang, J. et al. Single-cell fluorescence imaging using metal plasmon-coupled probe 2: single-molecule counting on lifetime image. Nano Lett. 8, 1179–1186 (2009).CrossRefGoogle Scholar
  58. 58.
    Sugawa, K. et al. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects. ACS Nano 7, 9997–10010 (2013).CrossRefGoogle Scholar
  59. 59.
    Hong, S.G., Lee, M.Y., Jackson, A.O. & Lee, L.P. Bioinspired optical antennas: gold plant viruses. Light: Sci. Appl. 4, e267 (2015).CrossRefGoogle Scholar
  60. 60.
    Park, M., Oh, Y.-J., Park, S.-G., Yang, S.-B. & Jeong, K.-H. Electrokinetic preconcentration of small molecules within volumetric electromagnetic hotspots in surface-enhanced Raman scattering. Small 11, 2487–2492 (2015).CrossRefGoogle Scholar
  61. 61.
    Wu, D. & Fang, Y. The adsorption behavior of p-hydroxybenzoic acid on a silver-coated filter paper by surface enhanced Raman scattering. J. Colloid Interface Sci. 265, 234–238 (2003).CrossRefGoogle Scholar
  62. 62.
    Luo, Z. and Fang, Y. SERS of C60/C70 on gold-coated filter paper on filter film influenced by the gold thickness. J. Colloid Interface Sci. 283, 459–463 (2005).CrossRefGoogle Scholar
  63. 63.
    Zhang, L. et al. Cellulose nanofibre textured SERS substrate. Colloid Surf., A 468, 309–314 (2015).CrossRefGoogle Scholar
  64. 64.
    Ngo, Y.H., Li, D., Simon, G.P. & Garnier, G. Effect of cationic polyacrylamide dissolution on the absorption state of gold nanoparticles on paper and their surface enhanced Raman scattering properties. Colloid Surf., A 420, 46–52 (2013).CrossRefGoogle Scholar
  65. 65.
    Ngo, Y.H., Li, D., Simon, G.P. & Garnier, G. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J. Colloid Interface Sci. 392, 237–246 (2013).CrossRefGoogle Scholar
  66. 66.
    Ngo, Y.H., Then, W.L., Shen, W. & Garnier, G. Gold nanoparticles paper as a SERS bio-diagnostic platform. J. Colloid Interface Sci. 409, 59–65 (2013).CrossRefGoogle Scholar
  67. 67.
    Ballerini, D.R. et al. Gold nanoparticle-functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AIChE J. 60, 1598–1605 (2014).CrossRefGoogle Scholar
  68. 68.
    Tian, L. et al. Bioplasmonic paper as a platform for detection of kidney cancer biomarkers. Anal. Chem. 84, 9928–9934 (2012).CrossRefGoogle Scholar
  69. 69.
    Abbas, A. et al. Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal. Chem. 85, 3977–3983 (2013).CrossRefGoogle Scholar
  70. 70.
    Tadepalli, S. et al. Peptide-functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmoic paper devices. Sci. Rep. 5, 16206 (2015).CrossRefGoogle Scholar
  71. 71.
    Schmucker, A.L. et al. Plasmonic paper: a porous and flexible substrate enabling nanoparticle-based combinatorial chemistry. RSC Adv. 6, 4136–4144 (2016).CrossRefGoogle Scholar
  72. 72.
    Ross, M.B. et al. Structure-function relationships for surface-enhanced Raman spectroscopy-active plasmonic paper. J. Phys. Chem. C 120, 20789–20797 (2016).CrossRefGoogle Scholar
  73. 73.
    Wang, C., Liu, B. & Dou, X. Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sens. Actuators B 231, 357–364 (2016).CrossRefGoogle Scholar
  74. 74.
    Cheng, M.-L., Tsai, B.-C. & Yang, J. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal. Chim. Acta 708, 89–96 (2011).CrossRefGoogle Scholar
  75. 75.
    Rajapandiyan, P. & Yang, J. Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. J. Raman Spectrosc. 45, 574–580 (2014).CrossRefGoogle Scholar
  76. 76.
    Li, Y. et al. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 147, 493–500 (2016).CrossRefGoogle Scholar
  77. 77.
    Zhang, K., Qing, J., Gao, H., Ji, J. & Liu, B. Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis. Talanta 162, 52–56 (2017).CrossRefGoogle Scholar
  78. 78.
    Yu, W.W. & White, I.M. Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal. Chem. 82, 9626–9630 (2010).CrossRefGoogle Scholar
  79. 79.
    Berger, A.G., Restaino, S.M. & White, I.M. Verticalflow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal. Chim. Acta 949, 59–66 (2017).CrossRefGoogle Scholar
  80. 80.
    Zhang, W. et al. Brushing, a simple way to fabricate SERS active paper substrates. Anal. Methods 6, 2066–2071 (2014).CrossRefGoogle Scholar
  81. 81.
    Zhang, K. et al. Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection. ACS Appl. Mater. Interfaces 7, 16767–16774 (2015).CrossRefGoogle Scholar
  82. 82.
    Jung, H., Park, M., Kang, M. & Jeong, K.-H. Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules. Light: Sci. Appl. 5, e16009 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Moonseong Park
    • 1
  • Byoung-Hoon Kang
    • 1
  • Ki-Hun Jeong
    • 1
  1. 1.Department of Bio and Brain Engineering and KAIST Institute for Optical Science and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations