Skip to main content
Log in

Colorimetric Schirmer strip for tear glucose detection

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Human tears have attracted attention with easy-accessible indicators of healthcare monitoring. Recently self-monitoring of tear glucose in place of blood glucose has been developed with microfluidic paper-based analysis for a non-invasive diagnosis of diabetes. However, most previous works still have many limitations in unstable sample collection, low sensitivity, and insufficient sample volume. Here, we report a colorimetric Schirmer strip with preconcentration for tear glucose detection. A wax barrier on a paper strip enables tear collection of a fixed quantity as well as biocompatible incorporation of tear collection and detection by preventing flow reversal of reagents. Additional solvent was injected on a sampling site after tear collection, which accumulates the dispersed glucose into active site by capillary-driven flow for signal amplification. Glucose concentration was quantitatively detected at 0.1-2 mM by using a simple colorimetric method without any further image processing. The color changes in glucose concentration were clearly distinguishable between normal and diabetic patient-level. The colorimetric paper strip allows straightforward sensing platform for noninvasive diagnosis of diabetes and direct application of paper-based technology to the human body fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gelstein, S. et al. Human tears contain a chemosignal. Science 331, 226–230 (2011).

    Article  CAS  Google Scholar 

  2. La Belle, J.T. et al. Self-monitoring of tear glucose: the development of a tear based glucose sensor as an alternative to self-monitoring of blood glucose. Chem. Commun. (Camb) 52, 9197–9204 (2016).

    Article  Google Scholar 

  3. Mitsubayashi, K. & Arakawa, T. Cavitas Sensors: Contact Lens Type Sensors & Mouthguard Sensors. Electroanalysis 28, 1170–1187 (2016).

    Article  CAS  Google Scholar 

  4. Sen, D.K. & Sarin, G.S. Tear glucose levels in normal people and in diabetic patients. Br. J. Ophthalmol. 64, 693–695 (1980).

    Article  CAS  Google Scholar 

  5. Van Haeringen, N.J. Clinical biochemistry of tears. Surv. Ophthalmol. 26, 84–96 (1981).

    Article  Google Scholar 

  6. Lane, J.D., Krumholz, D.M., Sack, R.A. & Morris, C. Tear glucose dynamics in diabetes mellitus. Curr. Eye. Res. 31, 895–901 (2006).

    Article  CAS  Google Scholar 

  7. Kim, H.J., Jeong, S. & Noh, H. Quantitative Determination of Tear Glucose Using Paper Based Microfluidic Devices. Korean Chem. Soc. 59, 88–92 (2015).

    Article  CAS  Google Scholar 

  8. Zhang, J., Hodge, W., Hutnick, C. & Wang, X. Noninvasive diagnostic devices for diabetes through measuring tear glucose. J. Diabetes. Sci. Technol. 5, 166–172 (2011).

    Article  Google Scholar 

  9. Yan, Q. et al. Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration. Anal. Chem. 83, 8341–8346 (2011).

    Article  CAS  Google Scholar 

  10. Peng, B. et al. Evaluation of enzyme-based tear glucose electrochemical sensors over a wide range of blood glucose concentrations. Biosens. Bioelectron. 49, 204–209 (2013).

    Article  CAS  Google Scholar 

  11. Liao, Y.T., Yao, H.F., Lingley, A., Parviz, B. & Otis, B.P. A 3-mu W CMOS Glucose Sensor for Wireless Contact- Lens Tear Glucose Monitoring. IEEE J. Solid-state Circuits 47, 335–344 (2012).

    Article  Google Scholar 

  12. Kim, J., Yun, S. & Ounaies, Z. Discovery of cellulose as a smart material. Macromolecules 39, 4202–4206 (2006).

    Article  CAS  Google Scholar 

  13. Kim, M.S., Yeon, J.H. & Park, J.K. A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed. Microdevices 9, 25–34 (2007).

    Article  CAS  Google Scholar 

  14. Han, J. et al. Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology. Proc. Natl. Acad. Sci. U S A 113, 14283–14288 (2016).

    Article  CAS  Google Scholar 

  15. Martinez, A.W., Phillips, S.T. & Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. U S A 105, 19606–19611 (2008).

    Article  CAS  Google Scholar 

  16. Shin, J.H., Park, J., Kim, S.H. & Park, J.K. Programmed sample delivery on a pressurized paper. Biomicrofluidics 8, 054121 (2014).

    Article  Google Scholar 

  17. Mu, X., Zhang, L., Chang, S.Y., Cui, W. & Zheng, Z. Multiplex Microfluidic Paper-based Immunoassay for the Diagnosis of Hepatitis C Virus Infection. Anal. Chem. 86, 5338–5344 (2014).

    Article  CAS  Google Scholar 

  18. Yu, J.H., Ge, L., Huang, J.D., Wang, S.M. & Ge, S.G. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11, 1286–1291 (2011).

    Article  CAS  Google Scholar 

  19. Cheng, C.M. et al. Paper-Based ELISA. Angew. Chem. Int. Ed. 49, 4771–4774 (2010).

    Article  CAS  Google Scholar 

  20. Chen, B., Kwong, P. & Gupta, M. Patterned Fluoropolymer Barriers for Containment of Organic Solvents within Paper-Based Microfluidic Devices. Acs Appl. Mater. Interfaces 5, 12701–12707 (2013).

    Article  CAS  Google Scholar 

  21. Jungreis, E. Spot test analysis: Clinical, environmental, forensic, and geochemical applications. New York: John Wiley & Sons, 80 (1985).

    Google Scholar 

  22. Jokerst, J.C. et al. Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal. Chem. 84, 2900–2907 (2012).

    Article  CAS  Google Scholar 

  23. Yamada, K., Takaki, S., Komuro, N., Suzuki, K. & Citterio, D. An antibody-free microfluidic paper-based analytical device for the determination of tear fluid lactoferrin by fluorescence sensitization of Tb3+. Analyst 139, 1637–1643 (2014).

    Article  CAS  Google Scholar 

  24. Park, M., Jung, H., Jeong, Y. & Jeong, K.H. Plasmonic Schirmer Strip for Human Tear-Based Gouty Arthritis Diagnosis Using Surface-Enhanced Raman Scattering. ACS Nano 11, 438–443 (2017).

    Article  CAS  Google Scholar 

  25. Hwang, J., Lee, S. & Choo, J. Application of a SERSbased lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B. Nanoscale 8, 11418–11425 (2016).

    Article  CAS  Google Scholar 

  26. Park, S.G. et al. Nanoplasmonic Biopatch for in vivo Surface Enhanced Raman Spectroscopy. BioChip J. 8, 289–294 (2014).

    Article  CAS  Google Scholar 

  27. Nery, E.W. & Kubota, L.T. Evaluation of enzyme immobilization methods for paper-based devices- A glucose oxidase study. J. Pharm. Biomed. Anal. 117, 551–559 (2016).

    Article  CAS  Google Scholar 

  28. Khan, M.S., Li, X., Shen, W. & Garnier, G. Thermal stability of bioactive enzymatic papers. Colloid Surface B 75, 239–246 (2010).

    Article  CAS  Google Scholar 

  29. Carrilho, E., Martinez, A.W. & Whitesides, G.M. Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Anal. Chem. 81, 7091–7095 (2009).

    Article  CAS  Google Scholar 

  30. Schonhorn, J.E. et al. A device architecture for threedimensional, patterned paper immunoassays. Lab Chip 14, 4653–4658 (2014).

    Article  CAS  Google Scholar 

  31. Ohashi, Y., Dogru, M. & Tsubota, K. Laboratory findings in tear fluid analysis. Clin. Chim. Acta 369, 17–28 (2006).

    Article  CAS  Google Scholar 

  32. Bron, A.J. Diagnosis of dry eye. Surv. Ophthalmol. 45, S221–S226 (2001).

    Article  Google Scholar 

  33. Curto, V.F. et al. Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink. Rsc Advances 3, 18811–18816 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Hun Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, BH., Park, M. & Jeong, KH. Colorimetric Schirmer strip for tear glucose detection. BioChip J 11, 294–299 (2017). https://doi.org/10.1007/s13206-017-1405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-017-1405-7

Keywords

Navigation