PDMS microchannel surface modification with teflon for algal lipid research

Abstract

This paper presents a simple method for modifying the polydimethylsiloxane (PDMS) microfluidic channels with Teflon for algal lipid research. When culturing and staining algae inside microfluidic devices, the small molecule dyes absorbed by the microchannel surface render it difficult for imaging and quantification. PDMS surface coated with Teflon-AF resists the absorption of hydrophobic dye molecules (i.e., BODIPY and Nile red) as confirmed using fluorescence microscopy. Here, we introduce a surface modification of PDMS microchannel using Teflon-AF using a procedure of filling and drying to directly treat the PDMS surface with perfluorinated materials. This method can be used to prevent the absorption of fluorescent probe and obtain clear fluorescence micrographs without background signal from absorbed dye molecules on PDMS microchannel. We confirmed that contact angle of Teflon-coated PDMS (116.4°) is higher than that of unmodified PDMS (106.1°) and thus more hydrophobic. Furthermore, Teflon-coated PDMS surface had ~80% of oxygen transfer rate compared to that of native PDMS and good transparency in all visible light regions. Based on these characteristics, we successfully validated the visualization and quantification of intracellular lipid droplets in microalgae C. reinhardtii using BODIPY. We believe that our new method will expand microfluidic applications on characterization of biological lipid with fluorescence probes and biochemical markers.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Breslauer, D.N., Lee, P.J. & Lee, L.P. Microfluidics-based systems biology. Mol. Biosyst. 2, 97–112 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Na, S. et al. Microfluidic neural axon diode. Technology 1–9 (2016)

    Google Scholar 

  3. 3.

    Keenan, T.M. & Folch, A. Biomolecular gradients in cell culture systems. Lab Chip 8, 34–57 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Kim, S., Kim, H.J. & Jeon, N.L. Biological applications of microfluidic gradient devices. Integr. Biol. 2, 584–603 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    Kang, M. et al. Capillarity Guided Patterning of Microliquids. Small 11, 2789–2797 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Owen, M.J. & Smith, P.J. Plasma treatment of polydimethylsiloxane. J. Adhes. Sci. Technol. 8, 1063–1075 (1994).

    CAS  Article  Google Scholar 

  7. 7.

    Ni, M. et al. Cell culture on MEMS platforms: A review. Int. J. Mol. Sci. 10, 5411–5441 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Choi, S.-J. et al. A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl. Mater. Inter. 3, 4552–4556 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    Berthier, E., Young, E.W. & Beebe, D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 12, 1224–1237 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Sasaki, H., Onoe, H., Osaki, T., Kawano, R. & Takeuchi, S. Parylene-coating in PDMS microfluidic channels prevents the absorption of fluorescent dyes. Sens. Actuators, B 150, 478–482 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Ren, K., Zhao, Y., Su, J., Ryan, D. & Wu, H. Convenient method for modifying poly (dimethylsiloxane) to be airtight and resistive against absorption of small molecules. Anal. Chem. 82, 5965–5971 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Mays, R.L., Dickey, M.D. & Genzer, J. Microfluidic channels fabricated from poly (vinylmethylsiloxane) networks that resist swelling by organic solvents. Lab Chip 13, 4317–4320 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Ren, K., Dai, W., Zhou, J., Su, J. & Wu, H. Whole-Teflon microfluidic chips. Proc. Nat. Acad. Sci. 108, 8162–8166 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Drummond, C.J., Georgaklis, G. & Chan, D.Y. Fluorocarbons: surface free energies and van der Waals interaction. Langmuir 12, 2617–2621 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    Wu, C.-W. & Gong, G.-C. Fabrication of PDMS-based nitrite sensors using Teflon AF coating microchannels. IEEE Sens. J. 8, 465–469 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Cho, S.H., Godin, J. & Lo, Y.-H. Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels. IEEE Photon. Technol. Lett. 21, 1057–1059 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Johnson, I.D., Kang, H.C. & Haugland, R.P. Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores. Anal. Biochem. 198, 228–237 (1991).

    CAS  Article  Google Scholar 

  18. 18.

    Wang, J. et al. Microfluidics: a new cosset for neurobiology. Lab Chip 9, 644–652 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    Whitesides, G.M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    Unger, M.A., Chou, H.-P., Thorsen, T., Scherer, A. & Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    Farese, R.V. & Walther, T.C. Lipid droplets finally get a little RESPECT. Cell 139, 855–860 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Walther, T.C. & Farese, R.V. The life of lipid droplets. Biochim. Biophys. Acta 1791, 459–466 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Sacher, E. & Susko, J.R. Water permeation of polymer films. IV. Teflon FEP. J. Appl. Polym. Sci. 27, 3893–3902, doi:10.1002/app.1982.070271023 (1982).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Noo Li Jeon.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, J.W., Na, S., Kang, M. et al. PDMS microchannel surface modification with teflon for algal lipid research. BioChip J 11, 180–186 (2017). https://doi.org/10.1007/s13206-017-1302-0

Download citation

Keywords

  • Microfluidic device
  • Molecule absorption
  • Teflon coating
  • Microalgae
  • Chlamydomonas reinhardtii