BioChip Journal

, Volume 11, Issue 2, pp 146–152 | Cite as

Application of paper EWOD (electrowetting-on-dielectrics) chip: Protein tryptic digestion and its detection using MALDI-TOF mass spectrometry

  • Inae Jang
  • Hyojin Ko
  • Gwangro You
  • Hyunji Lee
  • Seunghwi Paek
  • Heedo Chae
  • Jae Hwan Lee
  • Sunkyung Choi
  • Oh-Sun Kwon
  • Kwanwoo Shin
  • Han Bin Oh
Original Article

Abstract

A paper-based open EWOD chip was used for protein tryptic digestion, and the resulting peptides were analyzed using MALDI-TOF mass spectrometry to identify the proteins. Although on-chip protein digestion was previously demonstrated on a glass-based EWOD platform, this is the first report to show that a paper-based EWOD can also be used for protein digestion and further analysis by mass spectrometry. A number of protein digestion processes, i.e., disulfide bond reduction, alkylation, buffering, and tryptic digestion, can be successfully conducted on the paper-based EWOD chip. Furthermore, a “Y”-shaped junction design was shown to be effective in successfully manipulating a droplet for protein digestion. A paper-based EWOD platform offers a cheap and versatile avenue for biological applications.

Keywords

EWOD Protein digestion MALDI-TOF Paper chip Trypsin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martinez, A.W., Phillips, S.T., Butte, M.J. & Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007).CrossRefGoogle Scholar
  2. 2.
    Zhao, W. & van den Berg, A. Lab on paper. Lab Chip 8, 1988–1991 (2008).CrossRefGoogle Scholar
  3. 3.
    Li, X., Ballerini, D.R. & Shen, W. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6, 011301 (2012).CrossRefGoogle Scholar
  4. 4.
    Liana, D.D., Raguse, B., Gooding, J.J. & Chow, E. Recent advances in paper-based sensors. Sensors 12, 11505–11526 (2012).CrossRefGoogle Scholar
  5. 5.
    Jebrail, M.J. et al. A digital microfluidic method for dried blood spot analysis. Lab Chip 11, 3218–3224 (2011).CrossRefGoogle Scholar
  6. 6.
    Mirica, K.A., Weis, J.G., Schnorr, J.M., Esser, B. & Swager, T.M. Mechanical drawing of gas sensors on paper. Angew. Chem. Int. Ed. 51, 10740–10745 (2012).CrossRefGoogle Scholar
  7. 7.
    Nie, Z., Deiss, F., Liu, X., Akbulut, O. & Whitesides, G.M. Integration of paper-based microfluidic device with commercial electrochemical readers. Lab Chip 10, 3163–3169 (2010).CrossRefGoogle Scholar
  8. 8.
    Apiluz, A. et al. Lab-on-paper with dual electrochemical, colorimetric detection for simultaneous determination of gold and iron. Anal. Chem. 82, 1727–1732 (2010).CrossRefGoogle Scholar
  9. 9.
    Ko, H. et al. Active digitial microfludic paper chips with inkjet-printed patterned electrodes. Adv. Mater. 26, 2335–2340 (2014).CrossRefGoogle Scholar
  10. 10.
    Fobel, R., Kirby, A.E., Ng, A.H.C., Farnood, R.R. & Wheeler, A.R. Paper microfluidics goes digital. Adv. Mater. 26, 2838–2843 (2014).CrossRefGoogle Scholar
  11. 11.
    Cho, S.K., Moon, H. & Kim, C.J. Creating, transporting, cutting, and merging liquid droplets by electrowettingbased actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12, 70–80 (2003).CrossRefGoogle Scholar
  12. 12.
    Fair, R.B. Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3, 245–281 (2007).CrossRefGoogle Scholar
  13. 13.
    Mugele, F. & Baret, J.C. Electrowetting: from basics to applications. J. Phys.: Condens. Matter 17, R705–R774 (2005).Google Scholar
  14. 14.
    Cho, S.K. & Moon, H. Electrowetting on dielectric (EWOD): new tool for bio/micro fluids handling. Bio-Chip J. 2, 79–96 (2008).Google Scholar
  15. 15.
    Chae, J.B. et al. Optimum thickness of hydrophobic layer for operating voltage reduction in EWOD system. Sensor Actuat. A Phys. 215, 8–16 (2014).CrossRefGoogle Scholar
  16. 16.
    Wheeler, A.R., Moon, H., Kim, C.J., Loo, J.A. & Garrell, R.L. Electrowetting-based microluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 76, 4833–4838 (2004).CrossRefGoogle Scholar
  17. 17.
    Moon, H., Wheeler, A.R., Garrell, R.L., Loo, J.A. & Kim, C.J. An integrated digital microluidic chip for multiplexed proteomics sample preparation and analysis by MALDI-TOF. Lab Chip 6, 1213–1219 (2006).CrossRefGoogle Scholar
  18. 18.
    Nichols, K.P. & Gardeniers, H.J. A digital microfluidic system for the investigation of pre-steady-state enzyme kinetics using rapid quenching with MALDI-TOF mass spectrometry. Anal. Chem. 79, 8699–8704 (2007).CrossRefGoogle Scholar
  19. 19.
    Chatterjee, D., Ytterberg, A.J., Son, S.U., Loo, J.A. & Garrell, R.L. Integration of protein processing steps on a droplet microfluidics platform for MALDI-TOF analsis. Anal. Chem. 82, 2095–2101 (2010).CrossRefGoogle Scholar
  20. 20.
    Lapierre, F. et al. High sensitive matrix-free mass spectrometry analysis of peptides using silicon nanowiresbased digital microfluidic device. Lab Chip 11, 1620–1628 (2011).CrossRefGoogle Scholar
  21. 21.
    Hillenkamp, F., Karas, M., Beavis, R.C. & Chait, B.T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63, 1193A–1203A (1991).CrossRefGoogle Scholar
  22. 22.
    So, H.R., Lee, J., Han, S.Y. & Oh, H.B. MALDI insource decay studies of polyamidoamine dendrimers. J. Am. Soc. Mass Spectrom. 23, 1821–1825 (2012).CrossRefGoogle Scholar
  23. 23.
    Clauser, K.R., Baker, P. & Burlingame, A.L. Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71, 2871–2882 (1999).CrossRefGoogle Scholar
  24. 24.
    Hu, L., Grunere, G., Gong, J., Kim, C.J. & Hornbostel, B. Electrowetting devices with transparent single-walled carbon nanotube electrodes. Appl. Phys. Lett. 90, 093124 (2007).CrossRefGoogle Scholar
  25. 25.
    Kwon, O.S. et al. Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper. Carbon 58, 116–127 (2013).CrossRefGoogle Scholar
  26. 26.
    Thiede, B. et al. Peptide mass fingerprinting. Methods 35, 237–247 (2005).CrossRefGoogle Scholar
  27. 27.
    http://www.matrixscience.com/Google Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Inae Jang
    • 1
  • Hyojin Ko
    • 1
  • Gwangro You
    • 1
  • Hyunji Lee
    • 1
  • Seunghwi Paek
    • 1
  • Heedo Chae
    • 1
  • Jae Hwan Lee
    • 2
  • Sunkyung Choi
    • 2
  • Oh-Sun Kwon
    • 1
  • Kwanwoo Shin
    • 1
  • Han Bin Oh
    • 1
  1. 1.Deparment of ChemistrySogang UniversitySeoulRepublic of Korea
  2. 2.CBR Defense DirectorateAgency for Defense Development (ADD)Yuseong, DaejeonRepublic of Korea

Personalised recommendations