Skip to main content
Log in

A simple and real-time sensing of human serum albumin using antibody-modified CNT-FET

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Microalbuminuria is a key indicator for the treatment of cardiovascular or cerebrovascular diseases and death. Therefore, sensitive and specific detection methods of HSA in biological fluids especially in low concentration are necessary in diagnosis and preventive medicine. Here, nanostructured electrical immunosensor is demonstrated for the rapid, sensitive and selective detection of human serum albumin (HSA), using single-walled carbon nanotube (swCNT) field-effect transistor (FETs) functionalized with monoclonal anti-human serum albumin (mAHSA) via simple coating. The selective binding of HSA with mAHSA on the surface of swCNT induces the electrostatic gating effect to the swCNT-FET. The resulting sensor exhibited high sensitivity toward HSA in real time, with good selectivity. The proposed method provides a powerful platform for a real time, sensitive and selective monitoring of HSA in biological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moina, C. & Ybarra, G. Fundamentals and Applications of Immunosensors, Advances in Immunoassay Technology. Dr. Norman H.L. Chiu (Ed.), InTech (2012).

    Google Scholar 

  2. Ricci, F., Volpe, G., Micheli, L. & Palleschi, G. A review on novel developments and applications of immunosensors in food analysis. Anal. Chim. Acta 605, 111–129 (2007).

    Article  CAS  Google Scholar 

  3. Lim, S.A. & Ahmed, M.U. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv. 6, 24995–25014 (2016).

    Article  CAS  Google Scholar 

  4. Li, M. et al. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. Acs Nano 7, 4967–4976 (2013).

    Article  CAS  Google Scholar 

  5. Pei, X. et al. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal. Chim. Acta 758, 1–18 (2013).

    Article  CAS  Google Scholar 

  6. Kim, T.H. et al. “Bioelectronic super-taster” device based on taste receptor-carbon nanotube hybrid structures. Lab Chip 11, 2262–2267 (2011).

    Article  CAS  Google Scholar 

  7. Kim, T.H. et al. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano 5, 2824–2830 (2011).

    Article  CAS  Google Scholar 

  8. Kim, T.H. et al. Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv. Mater. 21, 91–94 (2009).

    Article  CAS  Google Scholar 

  9. Kang, J. et al. Large-scale assembly of carbon nanotube-based flexible circuits for DNA sensors. Nanotechnology 19, 135305 (2008).

    Article  Google Scholar 

  10. Peters, T. All about albumin: biochemistry, genetics, and medical applications. Academic Press, San Diego (1996).

    Google Scholar 

  11. Smales, C.M. & James, D.C. Therapeutic proteins: methods and protocols. Humana Press, Totowa, N.J. (2005).

    Book  Google Scholar 

  12. Wu, H.Y. et al. Diagnostic performance of random urine samples using albumin concentration vs ratio of albumin to creatinine for microalbuminuria screening in patients with diabetes mellitus: a systematic review and meta-analysis. JAMA Intern. Med. 174, 1108–1115 (2014).

    Article  CAS  Google Scholar 

  13. Fanali, G. et al. Human serum albumin: From bench to bedside. Mol. Aspects Med. 33, 209–290 (2012).

    Article  CAS  Google Scholar 

  14. Alekseev, R.J. & Rebane, A.L. Serum albumin: structure, functions, and health impact. Nova Science Publishers, New York (2012).

    Google Scholar 

  15. Park, H.Y., Schumock, G.T., Pickard, A.S. & Akhras, K. A structured review of the relationship between microalbuminuria and cardiovascular events in patients with diabetes mellitus and hypertension. Pharmacotherapy 23, 1611–1616 (2003).

    Article  Google Scholar 

  16. Caballero, D., Martinez, E., Bausells, J., Errachid, A. & Samitier, J. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface. Anal. Chim. Acta 720, 43–48 (2012).

    Article  CAS  Google Scholar 

  17. Niwa, T. et al. Enzyme immunoassay for urinary albumin at low concentration in diabetes mellitus. Clin. Chim. Acta 186, 391–396 (1990).

    Article  CAS  Google Scholar 

  18. Fielding, B.A., Price, D.A. & Houlton, C.A. Enzyme immunoassay for urinary albumin. Clin. Chem. 29, 355–357 (1983).

    CAS  Google Scholar 

  19. Langer, K. et al. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. (Amsterdam, Neth.) 257, 169–180 (2003).

    CAS  Google Scholar 

  20. Heller, I. et al. Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591–595 (2008).

    Article  CAS  Google Scholar 

  21. Kim, B. & Kim, T.H. Determination of human serum albumin using a single-walled carbon nanotube-FET modified with bromocresol green. Microchim. Acta 183, 1513–1518 (2016).

    Article  CAS  Google Scholar 

  22. Jin, J.-H. et al. Real-time selective monitoring of allergenic Aspergillus molds using pentameric antibody-immobilized single-walled carbon nanotube-field effect transistors. RSC Adv. 5, 15728–15735 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.H. A simple and real-time sensing of human serum albumin using antibody-modified CNT-FET. BioChip J 11, 116–120 (2017). https://doi.org/10.1007/s13206-016-1204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-1204-6

Keywords

Navigation