BioChip Journal

, Volume 10, Issue 4, pp 297–309 | Cite as

Engineering hot spots on plasmonic nanopillar arrays for SERS: A review

  • Young-Jae Oh
  • Minhee Kang
  • Moonseong Park
  • Ki-Hun Jeong
Review Article


Nanopillar arrays have provided unique optical properties due to their multi-dimensional architectures with large surface area. Recently, surface enhanced Raman spectroscopy (SERS) has taken full benefits of nanopillar arrays for highly sensitive chemical and biosensing. This article gives an overview of hot spot engineering on nanopillar arrays for SERS. Nanopillar arrays are very beneficial for providing high density plasmonic nanostructures, which induce the oscillation of free electrons to create highly localized electric fields, i.e., electromagnetic hot spots, for highly intense SERS detection. The diverse methods have successfully demonstrated the nanofabrication of hotspot-rich nanopillar arrays on silicon or glass substrates. Tailoring hot spots enables ultrasensitive detection of biomolecules at low concentrations and even allows single-molecule level detections. This review overviews the nanofabrication methods for nanopillar array construction, the design strategies for electromagnetic hot spot generation on nanopillar arrays, and their SERS applications.


Nanopillar arrays Surface enhanced Raman scattering Hot spots Plasmonics Nanofabrication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xie, C. et al. Noninvasive neuron pinning with nanopillar arrays. Nano Lett. 10, 4020–4024 (2010).CrossRefGoogle Scholar
  2. 2.
    Brammer, K.S., Choi, C., Frandsen, C.J., Oh, S. & Jin, S. Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation. Acta Biomaterialia 7, 683–690 (2011).CrossRefGoogle Scholar
  3. 3.
    Bucaro, M.A., Vasques, Y., Hatton, B.D. & Aizenberg, J. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano 6, 6222–6230 (2012).CrossRefGoogle Scholar
  4. 4.
    Martines, E. et al. Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett. 5, 2097–2103 (2005).CrossRefGoogle Scholar
  5. 5.
    Zhang, L. & Resasco, D.E. Single-walled carbon nanotube pillars: a superhydrophobic surface. Langmuir 25, 4792–4798 (2009).CrossRefGoogle Scholar
  6. 6.
    Shieh, J. et al. Robust airlike superhydrophobic surfaces. Adv. Mater. 22, 597–601 (2010).CrossRefGoogle Scholar
  7. 7.
    Kim, J.-J. et al. Biologically inspired LED lens from cuticular nanostructures of firefly lantern. Proc. Nat. Acad. Sci. 109, 18674–18678 (2012).CrossRefGoogle Scholar
  8. 8.
    Chattopadhyay, S. et al. Anti-reflecting and photonic nanostructures. Mat. Sci. Eng. R 69, 1–35 (2010).CrossRefGoogle Scholar
  9. 9.
    Li, Y., Zhang, J. & Yang, B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today 5, 117–127 (2010).CrossRefGoogle Scholar
  10. 10.
    Suzuki, Y. & Yokoyama, K. Construction of a more sensitive fluorescence sensing material for the detection of vascular endothelial growth factor, a biomarker for angiogenesis, prepared by combining a fluorescent peptide and a nanopillar substrate. Biosens. Bioelectron. 26, 3696–3699 (2011).CrossRefGoogle Scholar
  11. 11.
    Dmitriev, A. et al. Enhanced nanoplasmonics optical sensors with reduced substrate effect. Nano Lett. 8, 3893–3898 (2008).CrossRefGoogle Scholar
  12. 12.
    Kubo, W. & Fujikawa, S. Au double nanopillars with nanogap for plasmonic sensor. Nano Lett. 11, 8–15 (2011).CrossRefGoogle Scholar
  13. 13.
    Opilik, L., Schmid, T. & Zenobi, R. Modern Raman imaging: vibrational spectroscopy on the micrometer and nanometer scales. Annu. Rev. Anal. Chem. 6, 379–398 (2013).CrossRefGoogle Scholar
  14. 14.
    Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005).CrossRefGoogle Scholar
  15. 15.
    Stiles, P.L., Dieringer, J.A., Shah, N.C. & van Dyune, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).CrossRefGoogle Scholar
  16. 16.
    Banholzer, M.J., Millstone, J.E., Qin, L. & Mirkin, C.A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 885–897 (2008).CrossRefGoogle Scholar
  17. 17.
    Fan, M., Andrade, G.F.S. & Brolo, A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy. Anal. Chim. Acta. 693, 7–25 (2011).CrossRefGoogle Scholar
  18. 18.
    Sharma, B. et al. High-performance SERS substrates: advances and challenges. MRS Bulletin 38, 615–624 (2013).CrossRefGoogle Scholar
  19. 19.
    Docabas, A., Ertas, G., Senlik, S.S. & Aydinli, A. Plasmonic band gap structures for surface-enhanced Raman scattering. Opt. Exp. 16, 12469–12477 (2008).CrossRefGoogle Scholar
  20. 20.
    Deng, X. et al. Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy. Nano Lett. 10, 1780–1786 (2010).CrossRefGoogle Scholar
  21. 21.
    Duan, G., Cai, W., Luo, Y., Li, Z. & Li. Y. Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect. Appl. Phys. Lett. 89, 211905 (2006).CrossRefGoogle Scholar
  22. 22.
    Kim, J.-H. et al. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering. Nanotechnology 20, 235302 (2009).CrossRefGoogle Scholar
  23. 23.
    Kho, K.W. et al. Polymer-based microfluidics with surface-enhanced Raman spectroscopy-active periodic metal nanostructures for biofluid analysis. J. Biomed. Opt. 13, 054026 (2008).CrossRefGoogle Scholar
  24. 24.
    Caldwell, J.D. et al. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5, 4046–4055 (2011).CrossRefGoogle Scholar
  25. 25.
    Gartia, M.R. et al. Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays. Nanotechnology 21, 395701 (2010).CrossRefGoogle Scholar
  26. 26.
    Jiang, D. et al. Ag films annealed in a nanoscale limited area for surface-enhanced Raman scattering detection. Nanotechnology 25, 235301 (2014).CrossRefGoogle Scholar
  27. 27.
    Fu, R. et al. Fabrication of silver nanoplate hierarchical turreted ordered array and its application in trace analyses. Chem. Commun. 51, 6609–6612 (2015).CrossRefGoogle Scholar
  28. 28.
    Cheng, C. et al. Fabrication and SERS performance of silver-nanoparticle-decorated Si/Zno nanotrees in ordered arrays. ACS Appl. Mater. Inter. 2, 1824–1828 (2010).CrossRefGoogle Scholar
  29. 29.
    Zhang, P.P., Gao, J. & Sun, X.H. An ultrasensitive, uniform and large-area surface-enhanced Raman scattering substrate based on Ag or Ag/Au nanoparticles decorated Si nanocone arrays. Appl. Phys. Lett. 106, 043103 (2015).CrossRefGoogle Scholar
  30. 30.
    Oh, Y.-J. & Jeong, K.-H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 24, 2234–2237 (2012).CrossRefGoogle Scholar
  31. 31.
    Chang, T.-W., Gartia, M.R., Seo, S., Hsiano, A. & Liu, G.L. A wafer-scale backplane-assisted resonating nanoantenna array SERS device created by tunable thermal dewetting nanofabrication. Nanotechnology 25, 145304 (2014).CrossRefGoogle Scholar
  32. 32.
    Chen, Y. et al. Electrically induced conformational change of peptides on metallic nanosurfaces. ACS Nano 6, 8847–8856 (2012).CrossRefGoogle Scholar
  33. 33.
    Deng, Y.-L. & Juang, Y.-J. Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis. Biosens. Bioelectron. 53, 37–42 (2014).CrossRefGoogle Scholar
  34. 34.
    Zuo, Z. et al. Highly sensitive surface enhanced Raamn scattering substrates based on Ag deocrated Si nanocone arrays and their application in trace dimethyl phthalate detection. Appl. Surf. Sci. 325, 45–51 (2015).CrossRefGoogle Scholar
  35. 35.
    Jeon, T.Y., Park, S.-G., Lee, S.Y., Jeon, H.C. & Yang, S.-M. Shape control of Ag nanostructures for practical SERS substrates. ACS Appl. Mater. Inter. 5, 243–248 (2013).CrossRefGoogle Scholar
  36. 36.
    Zhang, M.-L. et al. A high-efficiency surface-enhanced Raman scattering substrate based on silicon nanowires array decorated with silver nanoparticles. J. Phys. Chem. C 114, 1969–1975 (2010).CrossRefGoogle Scholar
  37. 37.
    Baik, S.Y. et al. Charge-selective surface-enhanced Raman scattering using silver and gold nanoparticles deposited on silicon-carbon core-shell nanowires. ACS Nano 6, 2459–2470 (2012).CrossRefGoogle Scholar
  38. 38.
    Seol, M.-L. et al. A nanoforest structure for practical surface-enhanced Raman scattering substrates. Nanotechnology 23, 095301 (2012).CrossRefGoogle Scholar
  39. 39.
    Wang, Y.Q., Ma, S., Yang, Q.Q. & Li, X.J. Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array. Appl. Surf. Sci. 258, 5881–5885 (2012).CrossRefGoogle Scholar
  40. 40.
    Kaminska, A. et al. Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications. J. Mater. Chem. 21, 8662–8669 (2011).CrossRefGoogle Scholar
  41. 41.
    Dhawan, A. et al. Methodologies for developing surface-enhanced Raman scattering (SERS) substrates for detection of chemical and biological molecules. IEEE Sens. J. 10, 608–616 (2010).CrossRefGoogle Scholar
  42. 42.
    Sun, K. et al. Gap-tunable Ag-nanorod arrays on alumina nanotip arrays as effective SERS substrates. J. Mater. Chem. C 1, 5015–5022 (2013).CrossRefGoogle Scholar
  43. 43.
    Yang, Y. et al. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering. Nanotechnology 21, 325701 (2010).CrossRefGoogle Scholar
  44. 44.
    Yang, Y. et al. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 4, 2663–2669 (2012).CrossRefGoogle Scholar
  45. 45.
    Jose, J., Park, M. & Pyun, J.-C. E. coli outer membrane with autodisplayed Z-domain as a molecular recognition layer of SPR biosensor. Biosens. Bioelectron. 25, 1225–1228 (2010).CrossRefGoogle Scholar
  46. 46.
    Park, M., Jose, J. & Pyun, J.-C. Hypersensitive immunoassay by using Escherichia coli outer membrane with autodisplayed Z-domains. Enzyme Microb. Technol. 46, 309–314 (2010).CrossRefGoogle Scholar
  47. 47.
    Park, M., Jose, J. & Pyun, J.-C. SPR biosensor by using E. coli outer membrane layer with autodisplayed Z domains. Sens. Actuators B 154, 82–88 (2011).CrossRefGoogle Scholar
  48. 48.
    Song, W. et al. Site-specific deposition of Ag nanoparticles on ZnO nanorod arrays via Galvanic reduction and their SERS applications. J. Raman Spectrosc. 41, 907–913 (2010).CrossRefGoogle Scholar
  49. 49.
    Sinha, G., Depero, L.E. & Alessandri, I. Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS Appl. Mater. Inter. 41, 907–913 (2011).Google Scholar
  50. 50.
    Chem, L. et al. ZnO/Au composite nanoarrays as substrates for surface-enhanced Raman scattering detection. J. Phys. Chem. C 114, 93–100 (2010).CrossRefGoogle Scholar
  51. 51.
    He, H., Cai, W., Lin, Y. & Chen, B. Surface decoration of ZnO nanorod arrays by electrophoresis in the Au colloidal solution prepared by laser ablation in water. Langmuir 26, 8925–8932 (2010).CrossRefGoogle Scholar
  52. 52.
    Tang, H. et al. Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv. Funct. Mater. 22, 218–224 (2012).CrossRefGoogle Scholar
  53. 53.
    Sakano, T. et al. Surface enhanced Raman scattering properties using Au-coated ZnO nanorods grown by two-step, off-axis pulsed laser deposition. J. Phys. D: Appl. Phys. 41, 225304 (2008).CrossRefGoogle Scholar
  54. 54.
    Lamberti, A. et al. Ultrasensitive Ag-coated TiO 2 nanotube arrays for flexible SERS-based optofluidic devices. J. Mater. Chem. C 3, 6868–6875 (2015).CrossRefGoogle Scholar
  55. 55.
    Dawson, P. et al. Combined antenna of silver-coated, vertically aligned multiwalled carbon nanotubes. Nano Lett. 11, 365–371 (2011).CrossRefGoogle Scholar
  56. 56.
    Liu, H., Zeng, B. & Jia, F. Direct growth of tellurium nanorod arrays on Pt/FTO/glass through a surfactant-assisted chemical reduction. Nanotechnology 22, 305608 (2011).CrossRefGoogle Scholar
  57. 57.
    Carvalho, W.M. et al. Large-area plasmnoic substrate of silver-coated iron oxide nanorod arrays for palsmon-enhanced spectroscopy. Chem. Phys. Chem. 14, 1871–1876 (2013).Google Scholar
  58. 58.
    Zhu, H., Chen, H., Wang, J. & Li, Q. Fabrication of Au nanotube arrays and their plasmnoic properties. Nanoscale 5, 3742–3746 (2013).CrossRefGoogle Scholar
  59. 59.
    Wu, W., Hu, M., Ou, J.S., Li, Z. & Williams, R.S. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 21, 255502 (2010).CrossRefGoogle Scholar
  60. 60.
    Ou, F.S. et al. Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy. Nano Lett. 21, 255502 (2010).Google Scholar
  61. 61.
    Chen, J. et al. Nanoimprinted patterned pillar substrates for surface-enhanced Raman scattering applications. ACS Appl. Mater. Inter. 7, 22106–22113 (2015).CrossRefGoogle Scholar
  62. 62.
    Chang, W.-Y. et al. Novel fabrication of an Au nanocone array on polycarbonate for high performance surface-enhanced Raman scattering. J. Micromech. Microeng. 21, 035023 (2011).CrossRefGoogle Scholar
  63. 63.
    Daglar, B., Khudiyev, T., Demirel, G.B., Buyukserin, F. & Bayindir, M. Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing. J. Mater. Chem. C 1, 7842–7848 (2013).CrossRefGoogle Scholar
  64. 64.
    Yu, Q. et al. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays. Nanotechnology 25, 175502 (2010).Google Scholar
  65. 65.
    Lovera, P. et al. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications. Nanotechnology 25, 175502 (2014).CrossRefGoogle Scholar
  66. 66.
    Ruan, C., Eres, G., Wang, W., Zhang, Z. & Gu, B. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy. Langmuir 23, 5757–5760 (2007).CrossRefGoogle Scholar
  67. 67.
    Zhou, Q. et al. Ag-nanoparticle-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates. Phys. Chem. Chem. Phys. 16, 3686–3692 (2014).CrossRefGoogle Scholar
  68. 68.
    Huang, Z. et al. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and aplication in detection PCBs. J. Raman Spectrosc. 44, 240–246 (2013).CrossRefGoogle Scholar
  69. 69.
    Chung, A.J., Huh, Y.S. & Erickson, D. Large area flexible SERS active substrates using engineered nanostructures. Nanoscale 3, 2903–2908 (2011).CrossRefGoogle Scholar
  70. 70.
    Cha, H.-R. et al. Microfabrication and optical properties of highly ordered silver nanostructures. Nanoscale Res. Lett. 7, 292 (2012).CrossRefGoogle Scholar
  71. 71.
    Pan, J. et al. Bonding of diatom frustules and Si substrates assisted by hydrofluoric acid. New J. Chem. 38, 206–212 (2014).CrossRefGoogle Scholar
  72. 72.
    Graca, M., Turner, J., Marshall, M. & Granick, S. Mica sheets with embedded metal nanorods: chemical imaging in a topographically smooth structure. J. Appl. Phys. 102, 064909 (2007).CrossRefGoogle Scholar
  73. 73.
    Wang, Y. et al. Nanostructured gold films for SERS by block copolymer-templated Galvanic displacement reactions. Nano Lett. 9, 2384–2389 (2009).CrossRefGoogle Scholar
  74. 74.
    Driskell, J.D. et al. The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates. J. Phys. Chem. C 112, 895–901 (2008).CrossRefGoogle Scholar
  75. 75.
    Singh, J.P. et al. Highly sensitive and transparent surface enhanced Raman scattering substrates made by active coldly condensed Ag nanorod arrays. J. Phys. Chem. C 116, 20550–20557 (2012).CrossRefGoogle Scholar
  76. 76.
    Fu, J., Cao, Z. & Yobas, L. Localized oblique-angle deposition: Ag nanorods on microstructure surfaces and their SERS characteristics. Nanotechnology 22, 505302 (2011).CrossRefGoogle Scholar
  77. 77.
    Keating, M. et al. Ordered silver and copper nanorod arrays for enhanced Raman scattering created via guided oblique angle deposition on polymer. J. Phys. Chem. C 118, 4878–4884 (2014).CrossRefGoogle Scholar
  78. 78.
    Zhou, Q., Li, Z., Yang, Y. & Zhang, Z. Arrays of aligned, single crystalline silver nanorods for trace amount detection. J. Phys. D: Appl. Phys. 41, 152007 (2008).CrossRefGoogle Scholar
  79. 79.
    Zhang, X., Zhou, Q., Ni, J., Li, Z. & Zhang, Z. Surface-enhanced Raman scattering from a hexagonal lattice of micro-patterns of vertically aligned Ag nanorods. Physica E 44, 460–463 (2011).CrossRefGoogle Scholar
  80. 80.
    Fan, J.-G. & Zhao, Y.-P. Gold-coated nanorod arrays as highly sensitive substrates for surface-enhanced Raman spectroscopy. Langmuir 24, 14172–14175 (2008).CrossRefGoogle Scholar
  81. 81.
    Jiwei, Q. et al. Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing. Nanoscale Res. Lett. 8, 437 (2013).CrossRefGoogle Scholar
  82. 82.
    Shao, F. et al. Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing. ACS Appl. Mater. Inter. 6, 6281–6289 (2014).CrossRefGoogle Scholar
  83. 83.
    Tanahashi, I. & Harada, Y. Silver nanoparticles deposited on TiO2-coated cicada and butterfly wings as naturally inspired SERS substrates. J. Mater. Chem. C 3, 5721–5726 (2015).CrossRefGoogle Scholar
  84. 84.
    Fang, H. et al. Approach for determination of ATP: ADP molar ratio in mixed solution by surface-enhanced Raman scattering. Biosens. Bioelectron. 69, 71–76 (2015).CrossRefGoogle Scholar
  85. 85.
    Peng, B. et al. Vertically aligned gold nanorod monolayer onarbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano 7, 5993–6000 (2013).CrossRefGoogle Scholar
  86. 86.
    Roper, C.S., Guté s, A., Carraro, C., Howe, R.T. & Maboudian, R. Single crystal silicon nanopillars, nanoneedles and nanoblades with precise positioning for massively parallel nanoscale device integration. Nanotechnology 23, 225303 (2012).CrossRefGoogle Scholar
  87. 87.
    Kattumenu, R., Lee, C.H., Tian, L., McConney, M.E. & Singamaneni, S. Nanorod decorated nanowires as highly efficient SERS-active hybrids. J. Mater. Chem. 21, 15218–15223 (2011).CrossRefGoogle Scholar
  88. 88.
    Lee, S. et al. Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates. Adv. Mater. 24, 5261–5266 (2012).CrossRefGoogle Scholar
  89. 89.
    Schmidt, M.S., Hü bner, J. & Boisen, A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 24, OP11–OP18 (2012).Google Scholar
  90. 90.
    Caldwell, J.D. et al. Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasmaenhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars. Opt. Exp. 19, 26056–26064 (2011).CrossRefGoogle Scholar
  91. 91.
    Prokes, S.M. et al. Hyperbolic and plasmonic properties of silicon/Ag aligned nanowire arrays. Opt. Exp. 21, 14962–14974 (2013).CrossRefGoogle Scholar
  92. 92.
    Zhang, L., Zhang, P. & Fang, Y. An investigation of the surface-enhanced Raman scattering effect from new substrates of several kinds of nanowire arrays. J. Colloid Interface Sci. 311, 502–506 (2007).CrossRefGoogle Scholar
  93. 93.
    Feng, J.-J., Lu, Y.-H., Gernert, U., Hildebrandt, P. & Murgida, D.H. Electrosynthesis of SER-active silver nanopillar electrode arrays. J. Phys. Chem. C 114, 7280–7284 (2010).CrossRefGoogle Scholar
  94. 94.
    Hu, H. et al. ZnO/Ag heterogeneous structure nanoarrays: photocatalytic synthesis and used as substrate for surface-enhanced Raman scattering detection. J. Alloy. Compd. 509, 2016–2020 (2011).CrossRefGoogle Scholar
  95. 95.
    Zhang, B. et al. Large-area silver-coated silicon nanowire arrays for molecular sensing using surfaceenhanced Raman spectroscopy. Adv. Funct. Mater. 18, 2348–2355 (2008).CrossRefGoogle Scholar
  96. 96.
    Feng, F. et al. SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology 20, 295501 (2009).Google Scholar
  97. 97.
    Hu, Y.S. et al. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: a practical approach to harness in-plane excitation. ACS Nano 10, 5721–5730 (2010).CrossRefGoogle Scholar
  98. 98.
    Yamauchi, Y. et al. Electrochemical design of two-dimensional Au nanocone arrays using porous anodic alumina membranes with conical holes. J. Nanosci. Nanotechnol. 10, 4384–4387 (2010).CrossRefGoogle Scholar
  99. 99.
    Park, M., Oh, Y.-J., Park, S.-G., Yang, S.-B. & Jeong, K.-H. Electrokinetic preconcentration of small molecules within volumetric electromagnetic hotspots in surface enhanced Raman scattering. Small 11, 2487–2492 (2015).CrossRefGoogle Scholar
  100. 100.
    Park, S.-G. et al. Plasmon enhanced photoacoustic generation from volumetric electromagnetic hotspots. Nanoscale 8, 757–761 (2016).CrossRefGoogle Scholar
  101. 101.
    Le Ru, E.C., Blackie, E., Meyer, M. & Etchegoin, P.G. Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111, 13794–13803 (2007).CrossRefGoogle Scholar
  102. 102.
    Félidj, N. et al. Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 82, 3095–3097 (2003).CrossRefGoogle Scholar
  103. 103.
    Haynes, C.L. & van Dyune, R.P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 107, 7426–7433 (2003).CrossRefGoogle Scholar
  104. 104.
    Greeneltch, N.G., Blaber, M.G., Schatz, G.C. & van Duyne, R.P. Plasmon-sampled surface-enhanced Raman excitation spectroscopy on silver immobilized nanorod assemblies and optimization for near infrared (?ex=1 064 nm) studies. J. Phys. Chem. C 117, 2554–2558 (2013).CrossRefGoogle Scholar
  105. 105.
    Oh, Y.-J. et al. Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance. Small 7, 184–188 (2011).CrossRefGoogle Scholar
  106. 106.
    Kang, M., Kim, J.-J., Oh, Y.-J., Park, S.-G. & Jeong, K.-H. A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering. Adv. Mater. 26, 4510–4514 (2014).CrossRefGoogle Scholar
  107. 107.
    Fukami, K. et al. Gold nanostructures for surface-enhanced Raman spectroscopy, prepared by electrodeposition in porous silicon. Materials 4, 791–800 (2011).CrossRefGoogle Scholar
  108. 108.
    Jeon, H.C., Heo, C.-J., Lee, S.Y. & Yang, S.-M. Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform. Adv. Funct. Mater. 22, 4268–4274 (2012).CrossRefGoogle Scholar
  109. 109.
    Olavarria-Fullerton, J. et al. Design and characterization of hybrid morphology nanoarrays as plasmonic Raman probes for antimicrobial detection. Appl. Spectrosc. 67, 1315–1322 (2013).CrossRefGoogle Scholar
  110. 110.
    Chu, Y.Z. & Crozier, K.B. Experimental study of the interaction between localized and propagating surface plasmons. Opt. Lett. 34, 244–246 (2009).CrossRefGoogle Scholar
  111. 111.
    Kumar, K. et al. Printing colour at the optical diffraction limit. Nat. Nanonotechnol. 7, 557–561 (2012).CrossRefGoogle Scholar
  112. 112.
    Bezares, F.J. et al. The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures. Plasmonics 7, 143–150 (2012).CrossRefGoogle Scholar
  113. 113.
    Camden, J.P. et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616–12617 (2008).CrossRefGoogle Scholar
  114. 114.
    Kleinman, S.L., Frontiera, R.R., Henry, A.-I., Dieringer, J.A. & van Duyne, R.P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013).CrossRefGoogle Scholar
  115. 115.
    Gunnarsson, L. et al. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 78, 802–804 (2001).CrossRefGoogle Scholar
  116. 116.
    Lim, D.-K., Jeon, K.-S., Kim, H.M., Nam, J.-M. & Suh, Y.D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9, 60–67 (2010).CrossRefGoogle Scholar
  117. 117.
    Yilmaz, M. et al. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS. Phys. Chem. Chem. Phys. 16, 5563–5570 (2014).CrossRefGoogle Scholar
  118. 118.
    Huang, Z. et al. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater. 22, 4136–4139 (2010).CrossRefGoogle Scholar
  119. 119.
    He, X. et al. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids. Nanoscale 7, 8619–8626 (2015).CrossRefGoogle Scholar
  120. 120.
    Liao, P.F. & Wokaun, A. Lightning rod effect in surface enhanced Raman-scattering. J. Chem. Phys. 76, 751–752 (1982).CrossRefGoogle Scholar
  121. 121.
    Bailo, E. & Deckert, V. Tip-enhanced Raman scattering. Chem. Soc. Rev. 37, 921–930 (2008).CrossRefGoogle Scholar
  122. 122.
    Lombardi, J.R., Brkie, R.L., Lu, T. & Xu. J. Chargertransfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J. Chem. Phys. 84, 4174–4180 (1986).CrossRefGoogle Scholar
  123. 123.
    Kiraly, B., Yang, S. & Huang, T.J. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobocity, photoluminescence, and surface-enhanced Raman scattering. Nanotechnology 24, 245704 (2013).CrossRefGoogle Scholar
  124. 124.
    Xu, Z., Jiang, J., Gartia, M.R. & Liu, G.L. Monolithic integrations of slanted silicon nanostructures on 3D microstructures and their application to surface-enhanced Raman spectroscopy. J. Phys. Chem. C 116, 24161–24170 (2012).CrossRefGoogle Scholar
  125. 125.
    Oh, Y.-J., Kim, J.-J. & Jeong, K.-H. Biologically inspired biophotonic surfaces with self-antireflection. Small 10, 2558–2563 (2014).CrossRefGoogle Scholar
  126. 126.
    Mo, X., Wu, Y., Zhang, J., Hang, T. & Li, M. Bioinspired multifunctional Au nanostructures with switchable adhesion. Langmuir 31, 10850–10858 (2015).CrossRefGoogle Scholar
  127. 127.
    Coppé, J.-P., Xu, Z., Chen, Y. & Liu, G.L. Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molceules. Nanotechnology 22, 245710 (2011).CrossRefGoogle Scholar
  128. 128.
    Xu, F. et al. Silver nanoparticles coated zinc oxide nanorods array as superhydrophobic substrate for the amplified SERS effect. J. Phys. Chem. C 115, 9977–9983 (2011).CrossRefGoogle Scholar
  129. 129.
    Guo, L. et al. Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering. J. Appl. Phys. 115, 213101 (2014).CrossRefGoogle Scholar
  130. 130.
    Zhao, X. et al. Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy. J. Mater. Chem. 19, 5547–5553 (2009).CrossRefGoogle Scholar
  131. 131.
    Yang, X., Zhong, H., Zhu, Y., Shen, J. & Li, C. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Dalton Transactions 42, 14324–14330 (2013).CrossRefGoogle Scholar
  132. 132.
    Li, X.H., Chen, G.Y., Yang, L.B., Jin, Z. & Liu, J.H. Multifunctional Au-coated TiO 2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 20, 2815–2824 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Young-Jae Oh
    • 1
  • Minhee Kang
    • 2
  • Moonseong Park
    • 3
  • Ki-Hun Jeong
    • 3
  1. 1.DMC R&D CenterSamsung Electronics Co., Ltd.SeoulRepublic of Korea
  2. 2.Medical Device Research CenterSamsung Medical CenterSeoulRepublic of Korea
  3. 3.Department of Bio and Brain Engineering and KAIST Institute for Optical Science and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations