Skip to main content
Log in

Engineered nanofluidic preconcentration devices by ion concentration polarization

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

A nanofluidic preconcentration device utilizing an ion concentration polarization (ICP) phenomenon has been regarded as one of the most efficient mechanism for preconcentrating low abundant molecules to be detected. In this review, a short fundamental aspect behind ICP was introduced and detailed engineering endeavors to enhance the performance of the preconcentration device were followed. While a conventional nanostructure based on silicon or glass substrate lose its ion-selectivity at a physiologically relevant electrolyte concentration, Nafion as a highly charged nanoporous material would maintain its permselectivity at the concentration so that various fabrication processes utilizing Nafion were introduced. In order to extend the capability of the device in terms of preconcentration factor and throughput, dual gates, “U”-shaped and one-channel device were shown with their pros and cons. Last section would introduce the most recent development of preconcentration mechanism; the simultaneous preconcentration with separation, the radial preconcentration and the two stress-free preconcentration mechanisms. Conclusively, this review would not only provide the key insight of development history of the nanofluidic preconcentration device but also contribute for creating the next generation preconcentration mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Reyes, D.R., Iossifidis, D., Auroux, P.-A. & Manz, A. Micro Total Analysis Systems. 1. Introduction, Theory, and Technology. Anal. Chem. 74, 2623–2636 (2002).

    CAS  Google Scholar 

  2. Auroux, P.-A., Iossifidis, D., Reyes, D.R. & Manz, A. Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications. tAnal. Chem. 74, 2637–2652 (2002).

    CAS  Google Scholar 

  3. Arora, A., Simone, G., Salieb-Beugelaar, G.B., Kim, J.T. & Manz, A. Latest Developments in Micro Total Analysis Systems. Anal. Chem. 82, 4830–4837 (2010).

    Article  CAS  Google Scholar 

  4. Aragay, G., Pons, J. & Merkoçi, A. Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection. Chem. Rev. 111, 3433–3458 (2011).

    Article  CAS  Google Scholar 

  5. Andersson, H. & van den Berg, A. Microfluidic devices for cellomics: a review. Sens. Actuators, B: Chemical 92, 315–325 (2003).

    Article  CAS  Google Scholar 

  6. Dolník, V., Liu, S. & Jovanovich, S. Capillary electrophoresis on microchip. Electrophoresis 21, 41–54 (2000).

    Article  Google Scholar 

  7. Jung, B., Bharadwaj, R. & Santiago, J.G. Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis. Electrophoresis 24, 3476–3483 (2003).

    Article  CAS  Google Scholar 

  8. Jung, B., Bharadwaj, R. & Santiago, J.G. On-chip Millionfold Sample Stacking Using Transient Isotachophoresis. Anal. Chem. 78, 2319–2327 (2006).

    Article  CAS  Google Scholar 

  9. Neuhoff, V., Arold, N., Taube, D. & Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262 (1988).

    Article  CAS  Google Scholar 

  10. Wang, Y.-C., Stevens, A.L. & Han, J. Million-fold Preconcentration of Proteins and Peptides by Nanofluidic Filter. Anal. Chem. 77, 4293–4299 (2005).

    Article  CAS  Google Scholar 

  11. Probstein, R.F. Physicochemical Hydrodynamics: An Introduction (Wiley-Interscience, 1994).

    Book  Google Scholar 

  12. Kim, S.J., Wang, Y.-C., Lee, J.H., Jang, H. & Han, J. Concentration Polarization and Nonlinear Electrokinetic Flow near Nanofluidic Channel. Phys. Rev. Lett. 99, 044501 (2007).

    Article  Google Scholar 

  13. Rubinstein, I. & Zaltzman, B. Dynamics of extended space charge in concentration polarization. Phys. Rev. E 81, 061502 (2010).

    Article  Google Scholar 

  14. Yossifon, G. & Chang, H.C. Selection of Nonequilibrium Overlimiting Currents: Universal Depletion Layer Formation Dynamics and Vortex Instability. Phys. Rev. Lett. 101, 254501 (2008).

    Article  Google Scholar 

  15. Kim, P., Kim, S.J., Suh, K.-Y. & Han, J. Stabilization of ion concentration polarization using a heterogeneous nanoporous junction. Nano. Lett. 10, 16–23 (2010).

    Article  CAS  Google Scholar 

  16. Dydek, E.V. et al. Overlimiting Current in a Microchannel. Phys. Rev. Lett. 107, 118301 (2011).

    Article  Google Scholar 

  17. Cho, I., Sung, G. & Kim, S.J. Overlimiting Current Through Ion Concentration Polarization Layer: Hydrodynamic Convection Effects. Nanoscale 6, 4620–4626 (2014).

    Article  CAS  Google Scholar 

  18. Nam, S. et al. Experimental Verification of Overlimiting Current by Surface Conduction and Electro-Osmotic Flow in Microchannels. Phys. Rev. Lett. 114, 114501 (2015).

    Article  Google Scholar 

  19. Green, Y. & Yossifon, G. Effects of three-dimensional geometric field focusing on concentration polarization in a heterogeneous permselective system. Phys. Rev. E 89, 013024 (2014).

    Article  Google Scholar 

  20. Kim, S.J., Li, L. & Han, J. Amplified Electrokinetic Response by Concentration Polarization near Nanofluidic Channel. Langmuir 25, 7759–7765 (2009).

    Article  CAS  Google Scholar 

  21. Mani, A., Zangle, T.A. & Santiago, J.G. On the Propagation of Concentration Polarization from Microchannel-Nanochannel Interfaces Part I: Analytical Model and Characteristic Analysis. Langmuir 25, 3898–3908 (2009).

    Article  CAS  Google Scholar 

  22. Zangle, T.A., Mani, A. & Santiago, J.G. Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem. Soc. Rev. 39, 1014–1035 (2010).

    Article  CAS  Google Scholar 

  23. Mao, P. & Han, J. Fabrication and Characterization of 20 nm Nanofluidic Channels by Glass-Glass and Glass-Silicon Bonding. Lab Chip 5, 837–844 (2005).

    Article  CAS  Google Scholar 

  24. Mao, P. & Han, J. Massively-Parallel Ultra-High-Aspect-Ratio Nanochannels as Mesoporous Membranes. Lab Chip 9, 586–591 (2009).

    Article  CAS  Google Scholar 

  25. Pu, Q., Yun, J., Temkin, H. & Liu, S. Ion-Enrichment and Ion-Depletion Effect of Nanochannel Structures. Nano Lett. 4, 1099–1103 (2004).

    Article  CAS  Google Scholar 

  26. Mauritz, K.A. & Moore, R.B. State of understanding of Nafion. Chem. Rev. 104, 4535–4585 (2004).

    Article  CAS  Google Scholar 

  27. St-Pierre, J., Wetton, B., Kim, G.-S. & Promislow, K. Limiting Current Operation of Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 154, B186–B193 (2007).

    Article  CAS  Google Scholar 

  28. Costa, P. & Bosio, B. Identification problems and analysis of the limit current in fuel cells. J. Power Sources 185, 1141–1146 (2008).

    Article  CAS  Google Scholar 

  29. Kim, S.J. & Han, J. Self-Sealed Vertical Polymeric Nanoporous Junctions for High-Throughput Nanofluidic Applications. Anal. Chem. 80, 3507–3511 (2008).

    Article  CAS  Google Scholar 

  30. Choi, E., Chang, H.-K., Lim, C.Y., Kim, T. & Park, J. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels. Lab Chip 12, 3968–3975 (2012).

    Article  CAS  Google Scholar 

  31. Song, Y.-A., Wu, L., Tannenbaum, S.R., Wishnok, J.S. & Han, J. Tunable Membranes for Free-Flow Zone Electrophoresis in PDMS Microchip Using Guided Self-Assembly of Silica Microbeads. Anal. Chem. 85, 11695–11699 (2013).

    Article  CAS  Google Scholar 

  32. Lee, J.H., Song, Y.-A. & Han, J. Multiplexed Proteomic Sample Preconcentration Device Using Surface-Patterned Ion-Selective Membrane Lab Chip 8, 596–601 (2008).

  33. Lee, J.H., Cosgrove, B.D., Lauffenburger, D.A. & Han, J. Microfluidic Concentration-Enhanced Celluar Kinase Activity Assay. J. Am. Chem. Soc. 131, 10340–10341 (2009).

    Article  CAS  Google Scholar 

  34. Kim, S.J., Ko, S.H., Kang, K.H. & Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotech. 5, 297–301 (2010).

    Article  CAS  Google Scholar 

  35. Wang, Y.-C. & Han, J. Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 8, 392–394 (2008).

    Article  CAS  Google Scholar 

  36. Ko, S.H. et al. Massively-Parallel Concentration Device for Multiplexed Immunoassays. Lab Chip 11, 1351–1358 (2011).

    Article  CAS  Google Scholar 

  37. Kim, D., Raj, A., Zhu, L., Masel, R.I. & Shannon, M.A. Non-equilibrium electrokinetic micro/nanofluidic mixer. Lab Chip 8, 625–628 (2008).

    Article  CAS  Google Scholar 

  38. Jia, M. & Kim, T. Multiphysics Simulation of Ion Concentration Polarization Induced by a Surface-Patterned Nanoporous Membrane in Single Channel Devices. Anal. Chem. 86, 10365–10372 (2014).

    Article  CAS  Google Scholar 

  39. Kim, M., Jia, M. & Kim, T. Ion concentration polarization in a single and open microchannel induced by a surface-patterned perm-selective film. Analyst 138, 1370–1378 (2013).

    Article  CAS  Google Scholar 

  40. Ko, S.H. et al. Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization. Lab Chip 12, 4472–4482 (2012).

    Article  CAS  Google Scholar 

  41. Cheow, L.F. & Han, J.Y. Continuous Signal Enhancement for Sensitive Aptamer Affinity Probe Electrophoresis Assay Using Electrokinetic Concentration. Anal. Chem. 83, 7086–7093 (2011).

    Article  CAS  Google Scholar 

  42. Cheow, L.F., Sarkar, A., Kolitz, S., Lauffenburger, D. & Han, J. Detecting Kinase Activities from Single Cell Lysate Using Concentration-Enhanced Mobility Shift Assay. Anal. Chem. 86, 7455–7462 (2014).

    Article  CAS  Google Scholar 

  43. Choi, J. et al. Selective preconcentration and online collection of charged molecules using ion concentration polarization. RSC Advances 5, 66178–66184 (2015).

    Article  CAS  Google Scholar 

  44. Aïzel, K., Fouillet, Y. & Pudda, C. Electropreconcentration of nanoparticles using a radial micro-nanofluidic device. J. Nanopart. Res. 16, 1–9 (2014).

    Article  Google Scholar 

  45. Dungchai, W., Chailapakul, O. & Henry, C.S. Electrochemical Detection for Paper-Based Microfluidics. Anal. Chem. 81, 5821–5826 (2009).

    Article  CAS  Google Scholar 

  46. Martinez, A.W., Phillips, S.T., Whitesides, G.M. & Carrilho, E. Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Anal. Chem. 82, 3–10 (2010).

    Article  CAS  Google Scholar 

  47. Martinez, A.W., Phillips, S.T. & Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. U.S.A. 105, 19606–19611 (2008).

    Article  CAS  Google Scholar 

  48. Gong, M.M., Zhang, P., MacDonald, B.D. & Sinton, D. Nanoporous Membranes Enable Concentration and Transport in Fully Wet Paper-Based Assays. Anal. Chem. 86, 8090–8097 (2014).

    Article  CAS  Google Scholar 

  49. Gong, M.M., Nosrati, R., San Gabriel, M.C., Zini, A. & Sinton, D. Direct DNA Analysis with Paper-Based Ion Concentration Polarization. J. Am. Chem. Soc. 137, 13913–13919 (2015).

    Article  CAS  Google Scholar 

  50. Yang, R.-J., Pu, H.-H. & Wang, H.-L. Ion concentration polarization on paper-based microfluidic devices and its application to preconcentrate dilute sample solutions. Biomicrofluidics 9, 014122 (2015).

    Article  Google Scholar 

  51. Phan, D.-T., Shaegh, S.A.M., Yang, C. & Nguyen, N.-T. Sample concentration in a microfluidic paper-based analytical device using ion concentration polarization. Sens. Actuators, B: Chemical 222, 735–740 (2016).

    Article  CAS  Google Scholar 

  52. Oh, Y., Lee, H., Son, S.Y., Kim, S.J. & Kim, P. Capillarity ion concentration polarization for spontaneous biomolecular preconcentration mechanism. Biomicrofluidics 10, 014102 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Jae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, S.Y., Lee, S., Lee, H. et al. Engineered nanofluidic preconcentration devices by ion concentration polarization. BioChip J 10, 251–261 (2016). https://doi.org/10.1007/s13206-016-0401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-0401-7

Keywords

Navigation