BioChip Journal

, Volume 9, Issue 2, pp 164–172 | Cite as

Characterization of human short tandem repeats (STRs) for individual identification using the Ion Torrent

  • Seri Lim
  • Jong Pil Youn
  • Sang Ok Moon
  • Youn Hyung Nam
  • Seung Bum Hong
  • Dongho Choi
  • Myunsoo HanEmail author
  • Seung Yong HwangEmail author
Original Article


Human genomic short tandem repeats (STRs) are specific gene sequences containing base pairs that are repeatedly arranged. From the various methods available for identifying individuals, STR analysis is the method most widely used in forensic science. Conventional polymerase chain reaction (PCR) was used for STR typing, and the PCR products, consisting of amplified STR loci (amplicons) were electrophoresed with a DNA analysis device. About ten STR markers were used as standards for STR characterization and analysis of size. Extensive efforts are currently being made to explore the STR sequence diversity by analyzing multiple chromosomal loci using next generation sequencing (NGS). NGS greatly facilitates STR marker analysis for individual identification and the complete sequencing of any given sample through concurrent high-throughput sequencing of multiple loci. As a result, NGS data are more accurate and comprehensive compared to that in a conventional database. In order to overcome the limitations of the currently used size-based STR analysis method, we have typed the DNA of 13 combined DNA index system (CODIS) STR markers using Ion PGM. This kit, developed by Ion Torrent, enables the analysis of STR alleles and the sequencing of corresponding genes. We then analyzed the alleles using the HID_STR_Genotyper plugin. Through this, we determined the sequence of the allele type 15 at the D3S1358 locus in all NIST SRM 2391b samples. This allowed for the verification of the exact type of allele, which the conventional size-based STR typing methods could not resolve.


Short tandem repeats Forensic DNA typing Massively parallel sequencing Ion PGM HID_STR_Genotyper plugin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lygo, J. et al. The validation of short tandem repeat (STR) loci for use in forensic casework. Int. J. Legal Med. 107, 77–89 (1994).CrossRefGoogle Scholar
  2. 2.
    Weber, J. L. Informativeness of human (dC-dA)n· (dG-dT)n polymorphisms. Genomics 7, 524–530 (1990).CrossRefGoogle Scholar
  3. 3.
    Weber, J.L. & Wong, C. Mutation of human short tandem repeats. Hum. Mol. Genet. 2, 1123–1128 (1993).CrossRefGoogle Scholar
  4. 4.
    Denis F., Alexander C., Sergey S., Tatyana, N. & Alexander, Z. Biochip for genotyping SNPs defining core Y-chromosome haplogroups in Russian population groups. BioChip J. 8, 171–178 (2014).CrossRefGoogle Scholar
  5. 5.
    Urquhart A., Kimpton C., Downes, T. & Gill, P. Variation in short tandem repeat sequences-a survey of twelve microsatellite loci for use as forensic identification markers. Int. J. Legal Med. 107, 13–20 (1994).CrossRefGoogle Scholar
  6. 6.
    Hammond, H.A., Jin L., Zhong Y., Caskey, C.T. & Chakraborty, R. Evaluation of 13 short tandem repeat loci for use in personal identification applications. Am. J. Hum. Genet. 55, 175 (1994).Google Scholar
  7. 7.
    Lazaruk, K. et al. Genotyping of forensic short tandem repeat (STR) systems based on sizing precision in a capillary electrophoresis instrument. Electrophoresis 19, 86–93 (1998).CrossRefGoogle Scholar
  8. 8.
    Kimpton, C.P. et al. Automated DNA profiling employing multiplex amplification of short tandem repeat loci. Genome Res. 3, 13–22 (1993).CrossRefGoogle Scholar
  9. 9.
    Schoske R., Vallone, P. M., Ruitberg, C.M. & Butler, J.M. Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. Anal. Bioanal. Chem. 375, 333–343 (2003).Google Scholar
  10. 10.
    Butler, J.M., Buel E., Crivellente, F. & McCord, B.R. Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis. Electrophoresis 25, 1397–1412 (2004).CrossRefGoogle Scholar
  11. 11.
    Sanger F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74, 5463–5467 (1977).CrossRefGoogle Scholar
  12. 12.
    Metzker, M.L. Sequencing technologies-the next generation. Nat. Rev. Genet. 11, 31–46 (2009).CrossRefGoogle Scholar
  13. 13.
    Park, J.Y. et al. Comparative study between Next Generation Sequencing Technique and identification of microarray for Species Identification within blended food products. Biochip J. 6, 354–361 (2012).CrossRefGoogle Scholar
  14. 14.
    Rothberg, J.M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011).CrossRefGoogle Scholar
  15. 15.
    Loman, N.J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30, 434–439 (2012).CrossRefGoogle Scholar
  16. 16.
    Shokralla S., Spall, J.L., Gibson, J.F. & Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794–1805 (2012).CrossRefGoogle Scholar
  17. 17.
    Parson, W. et al. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci. Int. Genet. 7, 543–549 (2013).CrossRefGoogle Scholar
  18. 18.
    Connors III, M. A. DNA Databases: The Case for the Combined DNA Index System. Wake Forest L. Rev. 29, 889 (1994).Google Scholar
  19. 19.
    Edwards A.,ia Hammond, H.A., Jin L., Caskey, C.T. & Chakraborty, R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12, 241–253 (1992).CrossRefGoogle Scholar
  20. 20.
    Sprecher, C.J., Puers C., Lins, A.M. & Schumm, J.W. General approach to analysis of polymorphic short tandem repeat loci. BioTechniques 20, 266–277 (1996).Google Scholar
  21. 21.
    Butler, J. & Hill, C. Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. Analysis 24 (2012).Google Scholar
  22. 22.
    Rockenbauer E., Hansen S., Mikkelsen M., Børsting, C. & Morling, N. Characterization of mutations and sequence variants in the D21S11 locus by next generation sequencing. Forensic Sci. Int. Genet. 8, 68–72(2014).Google Scholar
  23. 23.
    Ruitberg, C.M., Reeder, D.J. & Butler, J.M. STRBase: a short tandem repeat DNA database for the human identity testing community. Nucleic Acids Res. 29, 320–322 (2001).CrossRefGoogle Scholar
  24. 24. Scholar
  25. 25.
    Sharma, V. & Litt, M. Tetranucleotide repeat polymorphism at the D21S11 locus. Hum. Mol. Genet. 1, 67–67 (1992).CrossRefGoogle Scholar
  26. 26.
    Farrer, M.J. et al. Allelic variability in D21S11, but not in APP or APOE, is associated with cognitive decline in Down syndrome. Neuroreport 8, 1645–1649(1997).CrossRefGoogle Scholar
  27. 27.
    Faas, B.H. et al. Non-invasive prenatal diagnosis of fetal aneuploidies using massively parallel sequencing- by-ligation and evidence that cell-free fetal DNA in the maternal plasma originates from cytotrophoblastic cells. Expert Opin. Biol. Ther. 12, S19-S26 (2012).Google Scholar
  28. 28. 7671.Google Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Seri Lim
    • 1
    • 3
  • Jong Pil Youn
    • 1
  • Sang Ok Moon
    • 2
  • Youn Hyung Nam
    • 2
  • Seung Bum Hong
    • 2
  • Dongho Choi
    • 2
  • Myunsoo Han
    • 2
    Email author
  • Seung Yong Hwang
    • 1
    • 3
    Email author
  1. 1.Biocore Co. Ltd.Guro-gu, SeoulKorea
  2. 2.Forensic DNA DivisionNational Forensic ServiceSeoulKorea
  3. 3.Department of Molecular and Life ScienceHanyang UniversityHanyangKorea

Personalised recommendations