Investigation of bacterial chemotaxis using a simple three-point microfluidic system

Abstract

A three-point microfluidic system was developed and used to experimentally verify bacterial chemotaxis with known chemoeffectors. Using pneumatically-controlled micro-valves, the device was able to regulate microscale flows and created concentration gradients that allowed GFP-labelled Escherichia coli cells to interact with an environment that contained a chemoattractant and a chemorepellent. Having two separate possible paths (left and right) for the bacteria to move forward, this device also allowed for imaging processing based removal of noisy data, if adirectional bias was present. This device could be useful for quantitative analysis of chemotactic behaviors with minimal technical requirements, and could motivate the development of future devices based on this concept.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Whitesides, G.M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  2. 2.

    Kim, M.J. & Breuer, K.S. A Selective Mixing in Microfluidic Systems Using Bacterial Chemotaxis. in ASME 277–282 (2005).

    Google Scholar 

  3. 3.

    Kim, S., Kim, H.J. & Jeon, N.L. Biological applications of microfluidic gradient devices. Integr. Biol. 2, 584–603 (2010).

    Article  CAS  Google Scholar 

  4. 4.

    Weibel, D.B. & Whitesides, G.M. Applications of microfluidics in chemical biology. Curr. Opin. Chem. Biol. 10, 584–591 (2006).

    Article  CAS  Google Scholar 

  5. 5.

    Sia, S.K. & Whitesides, G.M. Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003).

    Article  CAS  Google Scholar 

  6. 6.

    Weibel, D.B., DiLuzio, W.R. & Whitesides, G.M. Microfabrication meets microbiology. Nat. Rev. Microbiol. 5, 209–218 (2007).

    Article  CAS  Google Scholar 

  7. 7.

    Zare, R.N. & Kim, S. Microfluidic platforms for single- cell analysis. Annu. Rev. Biomed. Eng. 12, 187–201 (2010).

    Article  CAS  Google Scholar 

  8. 8.

    Li, J. & Lin, F. Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol. 21, 489–497 (2011).

    Article  Google Scholar 

  9. 9.

    Meyvantsson, I. & Beebe, D.J. Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1, 423–449 (2008).

    Article  CAS  Google Scholar 

  10. 10.

    Ahmed, T., Shimizu, T.S. & Stocker, R. Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. Nano Lett. 10, 3379–3385 (2010).

    Article  CAS  Google Scholar 

  11. 11.

    Keenan, T.M. & Folch, A. Biomolecular gradients in cell culture systems. Lab Chip 8, 34–57 (2007).

    Article  Google Scholar 

  12. 12.

    Diao, J. et al. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 6, 381–388 (2006).

    Article  CAS  Google Scholar 

  13. 13.

    Wadhams, G.H. & Armitage, J.P. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024–1037 (2004).

    Article  CAS  Google Scholar 

  14. 14.

    Eisenbach, M. Bacterial Chemotaxis. in eLS (John Wiley & Sons, Ltd, 2001).

    Google Scholar 

  15. 15.

    Kim, M.J. & Breuer, K.S. Controlled mixing in microfluidic systems using bacterial chemotaxis. Anal. Chem. 79, 955–959 (2007).

    Article  CAS  Google Scholar 

  16. 16.

    Phuyal, K. & Kim, M.J. Mechanics of swimming of multi-body bacterial swarmers using non-labeled cell tracking algorithm. Phys. Fluids B 25, 011901 (2013).

  17. 17.

    Berg, H.C. Motile behavior of bacteria. Phys. Today 53, 24–30 (2000).

    Article  CAS  Google Scholar 

  18. 18.

    Darnton, N.C., Turner, L., Rojevsky, S. & Berg, H.C. Dynamics of bacterial swarming. Biophys. J. 98, 2082–2090 (2010).

    Article  CAS  Google Scholar 

  19. 19.

    Ford, R.M. & Harvey, R.W. Role of chemotaxis in the transport of bacteria through saturated porous media. Adv. Water Resour. 30, 1608–1617 (2007).

    Article  Google Scholar 

  20. 20.

    Paguirigan, A.L. & Beebe, D.J. Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays 30, 811–821 (2008).

    Article  CAS  Google Scholar 

  21. 21.

    Jeon, N.L. et al. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20, 826–830 (2002).

    Article  CAS  Google Scholar 

  22. 22.

    Chung, B.G. et al. A gradient-generating microfluidic device for cell biology. J. Vis. Exp. 7 (2007).

  23. 23.

    Jeon, N.L. et al. Generation of solution and surface gradients using microfluidic systems. Langmuir 16, 8311–8316 (2000).

    Article  CAS  Google Scholar 

  24. 24.

    Cheng, S.-Y. et al. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7, 763–769 (2007).

    Article  CAS  Google Scholar 

  25. 25.

    Haessler, U., Kalinin, Y., Swartz, M.A. & Wu, M. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11, 827–835 (2009).

    Article  CAS  Google Scholar 

  26. 26.

    Atencia, J. & Beebe, D.J. Controlled microfluidic interfaces. Nature 437, 648–655 (2005).

    Article  CAS  Google Scholar 

  27. 27.

    Beebe, D.J., Mensing, G.A. & Walker, G.M. Physics and applications of microfluidics in biology Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

    Article  CAS  Google Scholar 

  28. 28.

    Mengeaud, V., Josserand, J. & Girault, H.H. Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal. Chem. 74, 4279–4286 (2002).

    Article  CAS  Google Scholar 

  29. 29.

    Studer, V. et al. Scaling properties of a low-actuation pressure microfluidic valve. J. Appl. Phys. 95, 393–398 (2003).

    Article  Google Scholar 

  30. 30.

    Kamholz, A.E., Weigl, B.H., Finlayson, B.A. & Yager, P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal. Chem. 71, 5340–5347 (1999).

    Article  CAS  Google Scholar 

  31. 31.

    Erickson, D. Towards numerical prototyping of labson- chip: modeling for integrated microfluidic devices. Microfluid. Nanofluid. 1, 301–318 (2005).

    Article  CAS  Google Scholar 

  32. 32.

    Berg, H.C. E. coli in Motion, (Springer, 2004).

    Google Scholar 

  33. 33.

    Alon, U., Surette, M.G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999).

    Article  CAS  Google Scholar 

  34. 34.

    Adler, J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol. 74, 77–91 (1973).

    Article  CAS  Google Scholar 

  35. 35.

    Mao, H., Cremer, P.S. & Manson, M.D. A sensitive, versatile microfluidic assay for bacterial chemotaxis. PNAS 100, 5449–5454 (2003).

    Article  CAS  Google Scholar 

  36. 36.

    De Pina, K., Desjardin, V., Mandrand-Berthelot, M. -A., Giordano, G. & Wu, L.-F. Isolation and Characterization of thenikR Gene Encoding a Nickel-Responsive Regulator in Escherichia coli. J. Bacteriol. 181, 670–674 (1999).

    Google Scholar 

  37. 37.

    Borrok, D., Borrok, M.J., Fein, J.B. & Kiessling, L.L. Link between chemotactic response to Ni2+ and its adsorption onto the Escherichia coli cell surface. Environ. Sci. Technol. 39, 5227–5233 (2005).

    Article  CAS  Google Scholar 

  38. 38.

    Macomber, L. & Hausinger, R.P. Mechanisms of nickel toxicity in microorganisms. Metallomics 3, 1153–1162 (2011).

    Article  CAS  Google Scholar 

  39. 39.

    Unger, M.A., Chou, H.-P., Thorsen, T., Scherer, A. & Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Min Jun Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Ali, J., Phuyal, K. et al. Investigation of bacterial chemotaxis using a simple three-point microfluidic system. BioChip J 9, 50–58 (2015). https://doi.org/10.1007/s13206-014-9107-x

Download citation

Keywords

  • Bacterial Chemotaxis
  • Microfluidics
  • Bacterial Motility
  • Escherichia coli
  • Microfluidic gradient