BioChip Journal

, Volume 9, Issue 1, pp 50–58 | Cite as

Investigation of bacterial chemotaxis using a simple three-point microfluidic system

  • Hoyeon Kim
  • Jamel Ali
  • Kiran Phuyal
  • Sungsu Park
  • Min Jun Kim
Original Article

Abstract

A three-point microfluidic system was developed and used to experimentally verify bacterial chemotaxis with known chemoeffectors. Using pneumatically-controlled micro-valves, the device was able to regulate microscale flows and created concentration gradients that allowed GFP-labelled Escherichia coli cells to interact with an environment that contained a chemoattractant and a chemorepellent. Having two separate possible paths (left and right) for the bacteria to move forward, this device also allowed for imaging processing based removal of noisy data, if adirectional bias was present. This device could be useful for quantitative analysis of chemotactic behaviors with minimal technical requirements, and could motivate the development of future devices based on this concept.

Keywords

Bacterial Chemotaxis Microfluidics Bacterial Motility Escherichia coli Microfluidic gradient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Whitesides, G.M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).CrossRefGoogle Scholar
  2. 2.
    Kim, M.J. & Breuer, K.S. A Selective Mixing in Microfluidic Systems Using Bacterial Chemotaxis. in ASME 277–282 (2005).Google Scholar
  3. 3.
    Kim, S., Kim, H.J. & Jeon, N.L. Biological applications of microfluidic gradient devices. Integr. Biol. 2, 584–603 (2010).CrossRefGoogle Scholar
  4. 4.
    Weibel, D.B. & Whitesides, G.M. Applications of microfluidics in chemical biology. Curr. Opin. Chem. Biol. 10, 584–591 (2006).CrossRefGoogle Scholar
  5. 5.
    Sia, S.K. & Whitesides, G.M. Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003).CrossRefGoogle Scholar
  6. 6.
    Weibel, D.B., DiLuzio, W.R. & Whitesides, G.M. Microfabrication meets microbiology. Nat. Rev. Microbiol. 5, 209–218 (2007).CrossRefGoogle Scholar
  7. 7.
    Zare, R.N. & Kim, S. Microfluidic platforms for single- cell analysis. Annu. Rev. Biomed. Eng. 12, 187–201 (2010).CrossRefGoogle Scholar
  8. 8.
    Li, J. & Lin, F. Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol. 21, 489–497 (2011).CrossRefGoogle Scholar
  9. 9.
    Meyvantsson, I. & Beebe, D.J. Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1, 423–449 (2008).CrossRefGoogle Scholar
  10. 10.
    Ahmed, T., Shimizu, T.S. & Stocker, R. Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. Nano Lett. 10, 3379–3385 (2010).CrossRefGoogle Scholar
  11. 11.
    Keenan, T.M. & Folch, A. Biomolecular gradients in cell culture systems. Lab Chip 8, 34–57 (2007).CrossRefGoogle Scholar
  12. 12.
    Diao, J. et al. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 6, 381–388 (2006).CrossRefGoogle Scholar
  13. 13.
    Wadhams, G.H. & Armitage, J.P. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024–1037 (2004).CrossRefGoogle Scholar
  14. 14.
    Eisenbach, M. Bacterial Chemotaxis. in eLS (John Wiley & Sons, Ltd, 2001).Google Scholar
  15. 15.
    Kim, M.J. & Breuer, K.S. Controlled mixing in microfluidic systems using bacterial chemotaxis. Anal. Chem. 79, 955–959 (2007).CrossRefGoogle Scholar
  16. 16.
    Phuyal, K. & Kim, M.J. Mechanics of swimming of multi-body bacterial swarmers using non-labeled cell tracking algorithm. Phys. Fluids B 25, 011901 (2013).Google Scholar
  17. 17.
    Berg, H.C. Motile behavior of bacteria. Phys. Today 53, 24–30 (2000).CrossRefGoogle Scholar
  18. 18.
    Darnton, N.C., Turner, L., Rojevsky, S. & Berg, H.C. Dynamics of bacterial swarming. Biophys. J. 98, 2082–2090 (2010).CrossRefGoogle Scholar
  19. 19.
    Ford, R.M. & Harvey, R.W. Role of chemotaxis in the transport of bacteria through saturated porous media. Adv. Water Resour. 30, 1608–1617 (2007).CrossRefGoogle Scholar
  20. 20.
    Paguirigan, A.L. & Beebe, D.J. Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays 30, 811–821 (2008).CrossRefGoogle Scholar
  21. 21.
    Jeon, N.L. et al. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20, 826–830 (2002).CrossRefGoogle Scholar
  22. 22.
    Chung, B.G. et al. A gradient-generating microfluidic device for cell biology. J. Vis. Exp. 7 (2007).Google Scholar
  23. 23.
    Jeon, N.L. et al. Generation of solution and surface gradients using microfluidic systems. Langmuir 16, 8311–8316 (2000).CrossRefGoogle Scholar
  24. 24.
    Cheng, S.-Y. et al. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7, 763–769 (2007).CrossRefGoogle Scholar
  25. 25.
    Haessler, U., Kalinin, Y., Swartz, M.A. & Wu, M. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11, 827–835 (2009).CrossRefGoogle Scholar
  26. 26.
    Atencia, J. & Beebe, D.J. Controlled microfluidic interfaces. Nature 437, 648–655 (2005).CrossRefGoogle Scholar
  27. 27.
    Beebe, D.J., Mensing, G.A. & Walker, G.M. Physics and applications of microfluidics in biology Annu. Rev. Biomed. Eng. 4, 261–286 (2002).CrossRefGoogle Scholar
  28. 28.
    Mengeaud, V., Josserand, J. & Girault, H.H. Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal. Chem. 74, 4279–4286 (2002).CrossRefGoogle Scholar
  29. 29.
    Studer, V. et al. Scaling properties of a low-actuation pressure microfluidic valve. J. Appl. Phys. 95, 393–398 (2003).CrossRefGoogle Scholar
  30. 30.
    Kamholz, A.E., Weigl, B.H., Finlayson, B.A. & Yager, P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal. Chem. 71, 5340–5347 (1999).CrossRefGoogle Scholar
  31. 31.
    Erickson, D. Towards numerical prototyping of labson- chip: modeling for integrated microfluidic devices. Microfluid. Nanofluid. 1, 301–318 (2005).CrossRefGoogle Scholar
  32. 32.
    Berg, H.C. E. coli in Motion, (Springer, 2004).CrossRefGoogle Scholar
  33. 33.
    Alon, U., Surette, M.G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999).CrossRefGoogle Scholar
  34. 34.
    Adler, J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol. 74, 77–91 (1973).CrossRefGoogle Scholar
  35. 35.
    Mao, H., Cremer, P.S. & Manson, M.D. A sensitive, versatile microfluidic assay for bacterial chemotaxis. PNAS 100, 5449–5454 (2003).CrossRefGoogle Scholar
  36. 36.
    De Pina, K., Desjardin, V., Mandrand-Berthelot, M. -A., Giordano, G. & Wu, L.-F. Isolation and Characterization of thenikR Gene Encoding a Nickel-Responsive Regulator in Escherichia coli. J. Bacteriol. 181, 670–674 (1999).Google Scholar
  37. 37.
    Borrok, D., Borrok, M.J., Fein, J.B. & Kiessling, L.L. Link between chemotactic response to Ni2+ and its adsorption onto the Escherichia coli cell surface. Environ. Sci. Technol. 39, 5227–5233 (2005).CrossRefGoogle Scholar
  38. 38.
    Macomber, L. & Hausinger, R.P. Mechanisms of nickel toxicity in microorganisms. Metallomics 3, 1153–1162 (2011).CrossRefGoogle Scholar
  39. 39.
    Unger, M.A., Chou, H.-P., Thorsen, T., Scherer, A. & Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hoyeon Kim
    • 1
  • Jamel Ali
    • 1
  • Kiran Phuyal
    • 1
  • Sungsu Park
    • 2
  • Min Jun Kim
    • 1
    • 3
  1. 1.Department of Mechanical Engineering and MechanicsDrexel UniversityPhiladelphiaUSA
  2. 2.School of Mechanical EngineeringSungkyunkwan UniversitySuwonKorea
  3. 3.School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphiaUSA

Personalised recommendations