BioChip Journal

, Volume 8, Issue 4, pp 289–294 | Cite as

Nanoplasmonic biopatch for in vivo surface enhanced raman spectroscopy

  • Sang-Gil Park
  • Myeong-Su Ahn
  • Young-Jae Oh
  • Minseok Kang
  • Yong Jeong
  • Ki-Hun Jeong
Original Article


Surfaced enhanced Raman scattering (SERS) has been extensively exploited for label-free and non-destructive biochemical detections. Recently diverse SERS substrates have been reported to improve sensitivity of SERS. However, the current platforms still have technical limitation for in vivo applications. Here, we report a nanoplasmonic biopatch of plasmonic nanoparticles physically embedded in highly biocompatible and Raman inactive agarose hydrogel. Molecular diffusion of small molecules such as neurotransmitter through nanoplasmonic biopatch was quantitatively visualized without labeling by using real-time microscopic SERS. In particular, the nano/micro porous structures within agarose hydrogel allow the SERS detection of macromolecules such as amyloid fibrils. This soft SERS platform opens up new opportunities for in vivo SERS applications.


Plasmonic nanoparticles In vivo SERS Neurotransmitter Agarose gel Beta-amyloid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hudson, S.D. & Chumanov, G. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Anal. Bioanal. Chem. 394, 679–86 (2009).CrossRefGoogle Scholar
  2. 2.
    Moskovits, M. Surface-enhanced Raman spectroscopy: a brief perspective. Top. Appl. Phys. 103, 1–7 (2006).CrossRefGoogle Scholar
  3. 3.
    Kang, M. et al. A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering. Adv. Mater. 26, 4510–514 (2014).CrossRefGoogle Scholar
  4. 4.
    Chaney, S.B., Shanmukh, S., Dluhy, R.A. & Zhao, Y.P. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Appl. Phys. Lett. 87, 031908 (2005).Google Scholar
  5. 5.
    Li, K.B., Clime, L.V., Cui, B. & Veres, T. Surface enhanced Raman scattering on long-range ordered noblemetal nanocrescent arrays. Nanotechnology 19, 145305 (2008).Google Scholar
  6. 6.
    Chandran, S.P. et al. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Progr. 22, 577–83 (2006).CrossRefGoogle Scholar
  7. 7.
    Xie, J.P., Zhang, Q.B., Lee, J.Y. & Wang, D.I.C. The synthesis of SERS-active gold nanoflower tags for in vivo applications. Acs. Nano. 2, 2473–480 (2008).CrossRefGoogle Scholar
  8. 8.
    Camargo, P.H.C., Rycenga, M., Au, L. & Xia, Y.N. Isolating and probing the hot spot formed between two silver nanocubes. Angew. Chem. Int. Edit. 48, 2180–184 (2009).CrossRefGoogle Scholar
  9. 9.
    Zhang, T.R. et al. Kinetically probing site-specific heterogeneous nucleation and hierarchical growth of nanobranches. J. Phys. Chem. C 111, 13691–3695 (2007).Google Scholar
  10. 10.
    Lin, T.H. et al. Electrochemical SERS at periodic metallic nanopyramid arrays. J. Phys. Chem. C 113, 1367–372 (2009).CrossRefGoogle Scholar
  11. 11.
    Oh, Y.J. et al. Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance. Small 7, 184–88 (2011).CrossRefGoogle Scholar
  12. 12.
    Oh, Y.J. & Jeong, K.H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 24, 2234–237 (2012).CrossRefGoogle Scholar
  13. 13.
    Oh, Y.J. & Jeong, K.H. Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels. Lab Chip 14, 865–68 (2014).CrossRefGoogle Scholar
  14. 14.
    Krishnan, J.N. et al. Electroless deposition of SERS active Au-nanostructures on variety of metallic substrates. BioChip J. 7, 375–85 (2013).CrossRefGoogle Scholar
  15. 15.
    Lee, W., Lee, S.Y., Briber, R.M. & Rabin, O. Selfassembled SERS substrates with tunable surface plasmon resonances. Adv. Funct. Mater. 21, 3424–429 (2011).CrossRefGoogle Scholar
  16. 16.
    Park, M., Chang, H., Jeong, D.H. & Hyun, J. Spatial deformation of nanocellulose hydrogel enhances SERS. BioChip J. 7, 234–41 (2013).CrossRefGoogle Scholar
  17. 17.
    Das, G. et al. Nano-patterned SERS substrate: Application for protein analysis vs. temperature. Biosens. Bioelectron. 24, 1693–699 (2009).CrossRefGoogle Scholar
  18. 18.
    Kwon, M.J., Lee, J., Wark, A.W. & Lee, H.J. Nanoparticle–enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes. Anal. Chem. 84, 1702–707 (2012).CrossRefGoogle Scholar
  19. 19.
    Liu, H.W. et al. Single molecule detection from a largescale SERS-active Au79Ag21 substrate. Sci. Rep-Uk. 1, 112 (2011).Google Scholar
  20. 20.
    Li, L., Hutter, T., Steiner, U. & Mahajan, S. Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. Analyst 138, 4574–578 (2013).CrossRefGoogle Scholar
  21. 21.
    Drachev, V.P. et al. Adaptive silver films for surfaceenhanced Raman spectroscopy of biomolecules. J. Raman Spectrosc. 36, 648–56 (2005).CrossRefGoogle Scholar
  22. 22.
    Kumar, G.V.P. et al. Hot spots in ag core-au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J. Phys. Chem. C 111, 4388–392 (2007).Google Scholar
  23. 23.
    Dijkstra, R.J. et al. Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy. J. Neurosci. Meth. 159, 43–0 (2007).CrossRefGoogle Scholar
  24. 24.
    Kayat, M. & Volkan, M. New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid. Anal. Chem. 84, 7729–735 (2012).CrossRefGoogle Scholar
  25. 25.
    Stuart, D.A. et al. In vivo glucose measurement by surface- enhanced Raman spectroscopy. Anal. Chem. 78, 7211–215 (2006).Google Scholar
  26. 26.
    Ma, K. et al. In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal. Chem. 83, 9146–152 (2011).CrossRefGoogle Scholar
  27. 27.
    Qian, X.M. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–0 (2008).CrossRefGoogle Scholar
  28. 28.
    Maiti, K.K. et al. Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens. Bioelectron. 26, 398–03 (2010).CrossRefGoogle Scholar
  29. 29.
    Samanta, A. et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem. Int. Edit. 50, 6089–092 (2011).CrossRefGoogle Scholar
  30. 30.
    McQueenie, R. et al. Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal. Chem. 84, 5968–975 (2012).CrossRefGoogle Scholar
  31. 31.
    Zavaleta, C.L. et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 106, 13511–3516 (2009).CrossRefGoogle Scholar
  32. 32.
    Jensen, L. & Schatz, G.C. Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. J. Phys. Chem. A 110, 5973–977 (2006).CrossRefGoogle Scholar
  33. 33.
    Chou, I.H. et al. Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy. Nano. Lett. 8, 1729–735 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sang-Gil Park
    • 1
  • Myeong-Su Ahn
    • 1
  • Young-Jae Oh
    • 1
  • Minseok Kang
    • 1
  • Yong Jeong
    • 1
  • Ki-Hun Jeong
    • 1
  1. 1.Department of Bio and Brain Engineering and KAIST Institute for Optical Science and TechnologyKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea

Personalised recommendations