Skip to main content
Log in

Aqueous extracts of Anemarrhena asphodeloides stimulate glucagon-like pepetide-1 secretion in enteroendocrine NCI-H716 cells

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Anemarrhena asphodeloides (AA), a bitter taste herbal medicine, has been prescribed in traditional oriental medicine to treat diabetes mellitus. Here, AA was extracted and fractionated to investigate its effects on the stimulation of glucagon-like peptide-1 (GLP-1) secretion in enteroendocrine cells. GLP-1 is secreted from the human enteroendocrine L cells to the blood in response to ingested nutrients. Because GLP-1 increases glucose dependent insulin release, it is known as a therapeutic method for the treatment of type II diabetes mellitus. The human enteroendocrine L cell line NCI-H716 expresses various chemoreceptors including the G protein coupled receptor (GPCR). Previous studies suggested that, through the GPCR signaling pathway, the secretion of GLP-1 can be induced in NCI-H716. Accordingly, we studied the GLP-1 stimulation effect of the AA extract and its mode-of-action using the GLP-1 ELISA and microarray. Functional categorization of the microarray data confirmed up or down-regulated gene expressions associated with the GPCR signaling pathway. This study demonstrates that AA extracts have a scientific possibility as a GLP-1 stimulant and thus may have the potential to be a therapeutic herbal medicine for type II diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hui, H., Tang, G. & Go, V.L. Hypoglycemic herbs and their action mechanisms. Chin. Med. 4, 11 (2009).

    Article  Google Scholar 

  2. Bolen, S. et al. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann. Intern. Med. 147, 386–399 (2007).

    Article  Google Scholar 

  3. Jang, H.J. et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl. Acad. Sci. USA 104, 15069–15074 (2007).

    Article  CAS  Google Scholar 

  4. Le Neve, B. & Daniel, H. Selected tetrapeptides lead to a GLP-1 release from the human enteroendocrine cell line NCI-H716. Regul. Pept. 167, 14–20 (2011).

    Article  Google Scholar 

  5. Kreymann, B., Williams, G., Ghatei, M.A. & Bloom, S.R. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2, 1300–1304 (1987).

    Article  CAS  Google Scholar 

  6. Wettergren, A. et al. Truncated GLP-1 (proglucagon 78–107-amide) inhibits gastric and pancreatic functions in man. Dig. Dis. Sci. 38, 665–673 (1993).

    Article  CAS  Google Scholar 

  7. D’Alessio, D.A., Kahn, S.E., Leusner, C.R. & Ensinck, J.W. Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J. Clin. Invest. 93, 2263–2266 (1994).

    Article  Google Scholar 

  8. Todd, J.F. et al. Glucagon-like peptide-1 (GLP-1): a trial of treatment in non-insulin-dependent diabetes mellitus. Eur. J. Clin. Invest. 27, 533–536 (1997).

    Article  CAS  Google Scholar 

  9. Venkatakrishnan, A.J. et al. Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194 (2013).

    Article  CAS  Google Scholar 

  10. Kinnamon, S.C. Taste receptor signalling-from tongues to lungs. Acta Physiol. (Oxf ) 204, 158–168 (2012).

    Article  CAS  Google Scholar 

  11. Kim, S.J. et al. Pancreatic beta-cell prosurvival effects of the incretin hormones involve post-translational modification of Kv2.1 delayed rectifier channels. Cell Death Differ. 19, 333–344 (2012).

    Article  CAS  Google Scholar 

  12. Hoa, N.K., Phan, D.V., Thuan, N.D. & Ostenson, C.G. Insulin secretion is stimulated by ethanol extract of Anemarrhena asphodeloides in isolated islet of healthy Wistar and diabetic Goto-Kakizaki Rats. Exp. Clin. Endocrinol. Diabetes. 112, 520–525 (2004).

    Article  CAS  Google Scholar 

  13. Choi, E.K. et al. Hexane fraction of Citrus aurantium L. stimulates glucagon-like peptide-1 (GLP-1) secretion via membrane depolarization in NCI-H716 cells. BioChip J. 6, 41–47 (2012).

    Article  CAS  Google Scholar 

  14. Shin, M.H. et al. Gentiana scabra extracts stimulate glucagon-like peptide-1 secretion via G protein-coupled receptor pathway. BioChip J. 6, 114–119 (2012).

    Article  CAS  Google Scholar 

  15. Shi, C.S. et al. Regulator of G-protein signaling 3 (RGS3) inhibits Gbeta1gamma 2-induced inositol phosphate production, mitogen-activated protein kinase activation, and Akt activation. J. Biol. Chem. 276, 24293–24300 (2001).

    Article  CAS  Google Scholar 

  16. von Buchholtz, L. et al. RGS21 is a novel regulator of G protein signalling selectively expressed in subpopulations of taste bud cells. Eur. J. Neurosci. 19, 1535–1544 (2004).

    Article  Google Scholar 

  17. Bennett, V. & Baines, A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81, 1353–1392 (2001).

    CAS  Google Scholar 

  18. Stabach, P.R., Devarajan, P., Stankewich, M.C., Bannykh, S. & Morrow, J.S. Ankyrin facilitates intracellular trafficking of alpha1-Na+-K+-ATPase in polarized cells. Am. J. Physiol. Cell. Physiol. 295, C1202–1214 (2008).

    Article  CAS  Google Scholar 

  19. Singleton, P.A. & Bourguignon, L.Y. CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. Exp. Cell Res. 295, 102–118 (2004).

    Article  CAS  Google Scholar 

  20. Tolhurst, G. et al. Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP. Endocrinology 152, 405–413 (2011).

    Article  CAS  Google Scholar 

  21. Chung, H.J., Jan, Y.N. & Jan, L.Y. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc. Natl. Acad. Sci. USA 103, 8870–8875 (2006).

    Article  CAS  Google Scholar 

  22. Choi, E.-K. et al. Genome-wide gene expression analysis of Patrinia scabiosaefolia reveals an antibiotic effect. BioChip J. 5, 246–254 (2011).

    Article  CAS  Google Scholar 

  23. Kim, K.-S. et al. Global transcriptome analysis of the Escherichia coli O157 response to Houttuynia Cordata Thunb. BioChip J. 4, 237–246 (2010).

    Article  CAS  Google Scholar 

  24. Kim, K.-S. et al. The multi-target antibiotic efficacy of Angelica dahurica Bentham et Hooker extract exposed to the Escherichia coli O157:H7. BioChip J. 5, 333–342 (2011).

    Article  CAS  Google Scholar 

  25. Yang, H.J. et al. Global transcriptome analysis of the E. coli O157 response to Agrimonia pilosa extract. Mol. Cell. Toxicol. 7, 299–310 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeung-Jin Jang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KH., Kim, KS., Shin, M.H. et al. Aqueous extracts of Anemarrhena asphodeloides stimulate glucagon-like pepetide-1 secretion in enteroendocrine NCI-H716 cells. BioChip J 7, 188–193 (2013). https://doi.org/10.1007/s13206-013-7213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-013-7213-9

Keywords

Navigation