Skip to main content
Log in

Development of a DNA chip to identify the place of origin of hairtail species

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Hairtails of the family Trichiuridae are widely distributed in the West Sea, South Sea, and Jeju Island in Korea and form large populations on the continental shelf of the western North Pacific. These fish species are imported from China and several other countries because of the high demand in Korea. However, imported hairtail are difficult to distinguish from domestic hairtail. Thus, we developed a DNA chip that distinguishes three hairtail species from eight countries for quick and simple species identification. Species-specific oligonucleotide probes were designed by sequence analysis of the mitochondrial cytochrome c oxidase subunit I. In this study, we used species-specific probes and a DNA chip system to successfully and rapidly identify three different hairtail species from eight different geographical locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chakraborty, A., Aranishi, F. & Iwatsuki, Y. Genetic differences among three species of the genus Trichiurus (Perciformes: Trichiuridae) based on mitochondrial DNA analysis. Ichthyol. Res. 53, 93–96 (2006).

    Article  Google Scholar 

  2. Chung, I.H. et al. A DNA microarray for identification of selected Korean birds based on mitochondrial cytochrome c oxidase I gene sequences. Mol. Cells 30, 295–301 (2010).

    Article  CAS  Google Scholar 

  3. Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S. & Francis, C.M. Identification of birds through DNA barcodes. PLoS Biol. 2, e312 (2004).

    Article  Google Scholar 

  4. Kress, W.J. & Erickson, D.L. DNA barcodes: genes, genomics, and bioinformatics. Proc. Natl. Acad. Sci. 105, 2761–2762 (2008).

    Article  CAS  Google Scholar 

  5. Valdez-Moreno, M., Ivanova, N., Elías-Gutiérrez, M., Contreras-Balderas, S. & Hebert, P. Probing diversity in freshwater fishes from Mexico and Guatemala with DNA barcodes. J. Fish Biol. 74, 377–402 (2009).

    Article  CAS  Google Scholar 

  6. Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. & Hebert, P.D.N. DNA barcoding Australia’s fish species. Phil. Trans. R. Soc. B. 360, 1847–1857 (2005).

    Article  CAS  Google Scholar 

  7. Hebert, P.D.N., Cywinska, A. & Ball, S.L. Biological identifications through DNA barcodes. Phil. Trans. R. Soc. B. 270, 313–321 (2003).

    CAS  Google Scholar 

  8. Nijman, V. & Aliabadian, M. Performance of distance-based DNA barcoding in the molecular identification of primates. C. R. Biologies 333, 11–16 (2010).

    Article  CAS  Google Scholar 

  9. Rasmussen, R.S., Morrissey, M.T. & Hebert, P.D.N. DNA barcoding of commercially important salmon and trout species (Oncorhynchus and Salmo) from North America. J. Agric. Food Chem. 57, 8379–8385 (2009).

    Article  CAS  Google Scholar 

  10. Steinke, D., Zemlak, T.S. & Hebert, P.D.N. Barcoding Nemo: DNA-based identifications for the ornamental fish trade. PLoS ONE 4, e6300 (2009).

    Article  Google Scholar 

  11. Tzeng, C.H. & Chiu, T.S. DNA barcode-based identification of commercially caught cutlassfishes (Family: Trichiuridae) with a phylogenetic assessment. Fish. Res. 176–181 (2012).

    Google Scholar 

  12. Lowenstein, J.H., Amato, G. & Kolokotronis, S.O. The real maccoyii: identifying tuna sushi with DNA barcodes-contrasting characteristic attributes and genetic distances. PLoS ONE 4, e7866 (2009).

    Article  Google Scholar 

  13. Yancy, H.F. et al. Potential use of DNA barcodes in regulatory science: applications of the Regulatory Fish Encyclopedia. J. Food Prot. 71, 210–217 (2008).

    Article  CAS  Google Scholar 

  14. Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Herbert, P.D.N. Universal primer cocktails for fish DNA barcoding. Mol. Ecol. Notes 7, 544–548 (2007).

    Article  CAS  Google Scholar 

  15. Lakra, W. et al. DNA barcoding Indian marine fishes. Mol. Ecol. Resour. 11, 60–71 (2011).

    Article  CAS  Google Scholar 

  16. Ward, R., Hanner, R. & Hebert, P. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 74, 329–356 (2009).

    Article  CAS  Google Scholar 

  17. Kochzius, M. et al. DNA microarrays for identifying fishes. Mar. Biotechnol. 10, 207–217 (2008).

    Article  CAS  Google Scholar 

  18. Kochzius, M. et al. Identifying fishes through DNA barcodes and microarrays. PLoS ONE 5, e12620 (2010).

    Article  Google Scholar 

  19. Park, J.Y. et al. A DNA microarray for species identification of cetacean animals in Korean water. BioChip J. 4, 197–203 (2010).

    Article  CAS  Google Scholar 

  20. Peytavi, R. et al. Correlation between microarray DNA hybridization efficiency and the position of short capture probe on the target nucleic acid. BioTechniques 39, 89 (2005).

    Article  CAS  Google Scholar 

  21. Zhang, L., Hurek, T. & Reinhold-Hurek, B. Position of the fluorescent label is a crucial factor determining signal intensity in microarray hybridizations. Nucleic Acids Research 33, e166–e166 (2005).

    Article  Google Scholar 

  22. Hubert, N. et al. Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3, e2490 (2008).

    Article  Google Scholar 

  23. Smith, P. et al. DNA barcoding highlights a cryptic species of grenadier Macrourus in the Southern Ocean. J. Fish Biol. 78, 355–365 (2011).

    Article  CAS  Google Scholar 

  24. Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    Google Scholar 

  25. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).

    Article  CAS  Google Scholar 

  26. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    Article  CAS  Google Scholar 

  27. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  Google Scholar 

  28. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 783–791 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Yong Hwang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.Y., Kim, JH., Kim, EM. et al. Development of a DNA chip to identify the place of origin of hairtail species. BioChip J 7, 136–142 (2013). https://doi.org/10.1007/s13206-013-7206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-013-7206-8

Keywords

Navigation