Skip to main content
Log in

Facile fabrication of plastic template for three-dimensional micromixer-embedded microfluidic device

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

We report on a simple way to produce three-dimensional (3D) microstructures embedded in microchannel which is used as a micromixer in a microfluidic device. The micromilling machine has great capability of easily transferring the microstructured matter design onto the device substrate. According to the determined microstructure design, the different channel depths, widths, and complicated designs of microstructure are easily realized by the micromilling machine and thermoplastic substrate. These results provide a cost-effective way to produce master molds or their replica for the generation of complicated 3D micromixer embedded microfluidic devices. Furthermore, the complicated microstructure is suitable to use as micromixer which is important in microfluidicbased applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Squires, T.M. & Quake, S.R. Microfluidics: fluidic physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article  CAS  Google Scholar 

  2. Wang, K.W. et al. Organoclay-assisted interfacial polymerization for microfluidic production of monodisperse PEG-microdroplets and in situ encapsulation of E. coli. Biotechnol. Bioeng. 109, 289–294 (2012).

    Article  CAS  Google Scholar 

  3. Lee, K.G. et al. Synthesis and utilization of E. coliencapsulated PEG-based microdroplet using a microfluidic chip for biological application. Biotechnol. Bioeng. 107, 747–751 (2010).

    Article  CAS  Google Scholar 

  4. Song, H., Chen, D.L. & Ismagilov, R.F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006).

    Article  CAS  Google Scholar 

  5. Song, Y., Hormes, J. & Kumar, C.S.S.R. Microfluidic synthesis of nanomaterials. Small 4, 698–711 (2008).

    Article  CAS  Google Scholar 

  6. Hou, H.W. et al. Deformability based cell marginationA simple microfluidic design for malaria-infected erythrocyte separation. Lab. Chip 10, 2605–2613 (2010).

    Article  CAS  Google Scholar 

  7. Dittrich, P.S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov. 5, 210–218 (2006).

    Article  CAS  Google Scholar 

  8. Ghanim, M.H. & Abuullah, M.Z. Design of disposable DNA biosensor microchip with amperometirc detection featuring PCB substrate. BioChip J. 7, 51–56 (2013).

    Article  CAS  Google Scholar 

  9. Khandurina, J. et al. Integrated system for rapid PCRbased DNA analysis in microfluidic devices. Anal. Chem. 72, 2995–3000 (2010).

    Article  Google Scholar 

  10. Liao, Y. et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab. Chip 12, 746–749 (2012).

    Article  CAS  Google Scholar 

  11. Nguyen, N.-T. & Wu, Z. Micromixers-a review. J. Micromech. Microeng. 15, R1–R16 (2005).

    Article  Google Scholar 

  12. Lee, C.Y., Chang, C.L., Wang, T.N. & Fu, L.M. Microfluidic mixing: a review. Int. J. Mol. Sci. 12, 3263–3287 (2011).

    Article  CAS  Google Scholar 

  13. Chen, J. & Yang, R. Electroosmotic flow mixing in zigzag microchannels. Electrophoresis 28, 975–983 (2007).

    Article  Google Scholar 

  14. Mengeaud, V., Josserand, J. & Girault, H.G. Mixing processes in a zigzag microchannel: Finite element simulations and optical study. Anal. Chem. 74, 4279–4286 (2002).

    Article  CAS  Google Scholar 

  15. Leong, T.G., Zarafshar, A.M. & Gracias, D.H. Threedimensional fabrication at small size scales. Small 6, 792–806 (2010).

    Article  CAS  Google Scholar 

  16. Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D.E. Soft lithography in biology and biochemicstry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Article  CAS  Google Scholar 

  17. Xia, Y. & Whitesides G.M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  CAS  Google Scholar 

  18. Pemg, B., Wu, C., Shen, Y. & Lin, Y. Microfluidic chip fabrication using hot embossing and thermal bonding of COP. Polym. Adv. Technol. 21, 457–466 (2010).

    Article  CAS  Google Scholar 

  19. Cameron, N.S., Roberge, H., Vers, T., Jakeway, S.C. & Crabtree, H.J. High fidelity, high yield production of microfluidic devices by hot embossing lithography: rheology and stiction. Lab. Chip 6, 936–941 (2006).

    Article  CAS  Google Scholar 

  20. Qu, S. et al. Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection. Lab. Chip 2, 88–95 (2002).

    Article  Google Scholar 

  21. Truckenmuller, R. et al. Thermoforming of film-based biomedical microdevices. Adv. Mater. 23, 1311–1325 (2011).

    Article  Google Scholar 

  22. Therriault, D., White, S.R. & Lewis, J.A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2, 265–271 (2003).

    Article  CAS  Google Scholar 

  23. McDonald, J.C. et al. Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal. Chem. 74, 1537–1545 (2002).

    Article  CAS  Google Scholar 

  24. Grimes, A. et al. Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns. Lab. Chip 8, 170–172 (2008).

    Article  CAS  Google Scholar 

  25. Chao, S.H., Carlson, R. & Meldrum, D.R. Rapid fabrication of microchannels using microscale plasma activated templating (μPLAT) generated water molds. Lab. Chip 7, 641–643 (2007).

    Article  CAS  Google Scholar 

  26. Nunes, P.S., Ohlsson, P.D., Ordeig, O. & Kutter, J.P. Cyclic olefin polymers: emerging materials for labon-a-chip application. Microfluid. Nanofluid. 9, 145–161 (2010).

    Article  CAS  Google Scholar 

  27. Wilson, M.E. et al. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab. Chip 11, 1550–1555 (2011).

    Article  CAS  Google Scholar 

  28. Stroock, A.D. Chaotic mixer for microchannels. Science 295, 647–651 (2002).

    Article  CAS  Google Scholar 

  29. Rezk, A.R., Qi, A., Friend, J.R., Li, W.H. & Yeo, L.Y. Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab. Chip 12, 773–779 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung G. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B.S., Lee, K.G., Choi, H.W. et al. Facile fabrication of plastic template for three-dimensional micromixer-embedded microfluidic device. BioChip J 7, 104–111 (2013). https://doi.org/10.1007/s13206-013-7204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-013-7204-x

Keywords

Navigation