Integrated analysis of miRNA and mRNA reveals that acrolein modulates GPI anchor biosynthesis in human primary endothelial cells

Abstract

Acrolein (ACR) is a highly reactive α, β-unsaturated carbonyl compound that is related to several diabetic vascular complications. ACR, a ubiquitous aldehyde pollutant, is a product of incomplete combustion reactions and a major component of cigarette smoke. ACR is also endogenously generated during lipid peroxidation. Glycosylphosphatidylinositol (GPI)-anchored proteins is a membrane bound protein, which have a variety of cellular functions. It is reported that some of them showed the reduced level under diabetic conditions. In this study, we explored whether ACR may affect GPI anchor related gene expression in human umbilical vein endothelial cells (HUVECs) by modulation of miRNA expression that play a significant role in the post-transcriptional regulation of genes. We performed global gene expression analysis, acquired altered expression levels of 27 miRNAs and 21 mRNAs that are relevant to GPI anchored proteins, and observed their anti-correlations. Gene Ontology (GO) terms that are closely associated with GPI anchor biosynthesis were highest when analysis was based on biological processes characterized by enriched GO categories. Our results revealed that ACR may control miRNAs to regulate genes involving in GPI anchor biosynthesis in human endothelial cells.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Negre-Salvayre, A., Coatrieux, C., Ingueneau, C. & Salvayre, R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br. J. Pharmacol. 153, 6–20 (2008).

    Article  CAS  Google Scholar 

  2. 2.

    LoPachin, R.M., Barber, D.S. & Gavin, T. Molecular mechanisms of the conjugated alpha, beta-unsaturated carbonyl derivatives: relevance to neurotoxicity and neurodegenerative diseases. Toxicol. Sci. 104, 235–249 (2008).

    Article  CAS  Google Scholar 

  3. 3.

    Kirkham, P.A. et al. Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 184, 796–802 (2011).

    Article  CAS  Google Scholar 

  4. 4.

    Suzuki, D. & Miyata, T. Carbonyl stress in the pathogenesis of diabetic nephropathy. Intern. Med. 38, 309–314 (1999).

    Article  CAS  Google Scholar 

  5. 5.

    Ethen, C.M., Reilly, C., Feng, X., Olsen, T.W. & Ferrington, D.A. Age-related macular degeneration and retinal protein modification by 4-hydroxy-2-nonenal. Invest. Ophthalmol. Vis. Sci. 48, 3469–3479 (2007).

    Article  Google Scholar 

  6. 6.

    Lee, S.E. et al. Upregulation of heme oxygenase-1 as an adaptive mechanism for protection against crotonaldehyde in human umbilical vein endothelial cells. Toxicol. Lett. 201, 240–248 (2011).

    Article  CAS  Google Scholar 

  7. 7.

    Lee, S.E. et al. Induction of heme oxygenase-1 inhibits cell death in crotonaldehyde-stimulated HepG2 cells via the PKC-delta-p38-Nrf2 pathway. PLoS One 7, e41676 (2012).

    Article  CAS  Google Scholar 

  8. 8.

    Lu, J. et al. Increased plasma methylglyoxal level, inflammation, and vascular endothelial dysfunction in diabetic nephropathy. Clin. Biochem. 44, 307–311 (2011).

    Article  CAS  Google Scholar 

  9. 9.

    Daimon, M. et al. Increased urinary levels of pentosidine, pyrraline and acrolein adduct in type 2 diabetes. Endocr. J. 50, 61–67 (2003).

    Article  CAS  Google Scholar 

  10. 10.

    Toyokuni, S. et al. Serum 4-Hydroxy-2-Nonenal-Modified Albumin Is Elevated in Patients with Type 2 Diabetes Mellitus. Antioxid. Redox Signal. 2, 681–685 (2000).

    Article  CAS  Google Scholar 

  11. 11.

    Jeong, S.I. et al. Genome-wide analysis of gene expression by crotonaldehyde in human umbilical vein endothelial cells. Mol. Cell. Toxicol. 7, 127–134 (2011).

    Article  CAS  Google Scholar 

  12. 12.

    Carmella, S.G. et al. Quantitation of acrolein-derived (3-hydroxypropyl) mercapturic acid in human urine by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry: Effects of cigarette smoking. Chem. Res. Toxicol. 20, 986–990 (2007).

    Article  CAS  Google Scholar 

  13. 13.

    Esterbauer, H., Schaur, R.J. & Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11, 81–128 (1991).

    Article  CAS  Google Scholar 

  14. 14.

    Jeong, S.I. et al. Effect of alpha, beta-unsaturated aldehydes on endothelial cell growth in bacterial cellulose for vascular tissue engineering. Mol. Cell. Toxicol. 8, 119–126 (2012).

    Article  CAS  Google Scholar 

  15. 15.

    Park, Y.S. & Taniguchi, N. Acrolein induces inflammatory response underlying endothelial dysfunction: a risk factor for atherosclerosis. Ann. N. Y. Acad. Sci. 1126, 185–189 (2008).

    Article  CAS  Google Scholar 

  16. 16.

    Lee, N.J. et al. Upregulation of Heme Oxygenase-1 as an Adaptive Mechanism against Acrolein in RAW 264.7 Macrophages. Mol. Cell. Toxicol. 5, 230–236 (2009).

    Google Scholar 

  17. 17.

    Tsukahara, H. et al. Formation of advanced glycosylation end products and oxidative stress in young patients with type 1 diabetes. Pediatr. Res. 54, 419–424 (2003).

    Article  CAS  Google Scholar 

  18. 18.

    Daimon, M. et al. Increased urinary levels of pentosidine, pyrraline and acrolein adduct in type 2 diabetes. Endocr. J. 50, 61–67 (2003).

    Article  CAS  Google Scholar 

  19. 19.

    Noiri, E. et al. Serum protein acrolein adducts: Utility in detecting oxidant stress in hemodialysis patients and reversal using a vitamin E-bonded hemodialyzer. Free Radical. Biol. Med. 33, 1651–1656 (2002).

    Article  CAS  Google Scholar 

  20. 20.

    Hamada, Y. & Fukagawa, M. A possible role of thioredoxin interacting protein in the pathogenesis of streptozotocin-induced diabetic nephropathy. Kobe J. Med. Sci. 53, 53–61 (2007).

    CAS  Google Scholar 

  21. 21.

    Uchida, K. et al. Protein-bound acrolein: potential markers for oxidative stress. Proc. Natl. Acad. Sci. USA 95, 4882–4887 (1998).

    Article  CAS  Google Scholar 

  22. 22.

    Park, Y.S. et al. Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase. Arterioscler. Thromb. Vasc. Biol. 27, 1319–1325 (2007).

    Article  CAS  Google Scholar 

  23. 23.

    Orlean, P. & Menon, A.K. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J. Lipid Res. 48, 993–1011 (2007).

    Article  CAS  Google Scholar 

  24. 24.

    Ferguson, M.A. & Williams, A.F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu. Rev. Biochem. 57, 285–320 (1988).

    Article  CAS  Google Scholar 

  25. 25.

    Orlean, P. & Menon, A.K. Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J. Lipid. Res. 48, 993–1011 (2007).

    Article  CAS  Google Scholar 

  26. 26.

    Lisanti, M.P., Rodriguez-Boulan, E. & Saltiel, A.R. Emerging functional roles for the glycosyl-phosphatidylinositol membrane protein anchor. J. Membr. Biol. 117, 1–10 (1990).

    Article  CAS  Google Scholar 

  27. 27.

    Yang, H. et al. Differentially-expressed genes associated with glycophosphatidylinositol (GPI)-anchored proteins by diabetes-related toxic substances in human endothelial cells. BioChip J. 6, 262–270 (2012).

    Article  CAS  Google Scholar 

  28. 28.

    Accardo-Palumbo, A. et al. Glucose-induced loss of glycosyl-phosphatidylinositol-anchored membrane regulators of complement activation (CD59, CD55) by in vitro cultured human umbilical vein endothelial cells. Diabetologia 43, 1039–1047 (2000).

    Article  CAS  Google Scholar 

  29. 29.

    Acosta, J. et al. Molecular basis for a link between complement and the vascular complications of diabetes. Proc. Natl. Acad. Sci. USA 97, 5450–5455 (2000).

    Article  CAS  Google Scholar 

  30. 30.

    Skillen, A.W., Hawthorne, G.C. & Turner, G.A. Serum alkaline phosphatase in rats with streptozotocin-induced diabetes. Horm. Metab. Res. 19, 505–506 (1987).

    Article  CAS  Google Scholar 

  31. 31.

    Lema, C. & Cunningham, M.J. MicroRNAs and their implications in toxicological research. Toxicol. Lett. 198, 100–105 (2010).

    Article  CAS  Google Scholar 

  32. 32.

    Sun, X. et al. MicroRNA-181b regulates NF-kappaBmediated vascular inflammation. J. Clin. Invest. 122, 1973–1990 (2012).

    CAS  Google Scholar 

  33. 33.

    Caruso, P. et al. A Role for miR-145 in Pulmonary Arterial Hypertension: evidence from mouse models and patient samples. Circ. Res. 111, 290–300 (2012).

    Article  CAS  Google Scholar 

  34. 34.

    Asgeirsdottir, S.A. et al. MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation. Am. J. Physiol. Renal. Physiol. 302, F1630–1639 (2012).

    Article  CAS  Google Scholar 

  35. 35.

    Bonauer, A., Boon, R.A. & Dimmeler, S. Vascular microRNAs. Curr. Drug Targets 11, 943–949 (2010).

    Article  CAS  Google Scholar 

  36. 36.

    Treguer, K., Heinrich, E.M., Ohtani, K., Bonauer, A. & Dimmeler, S. Role of the MicroRNA-17-92 Cluster in the Endothelial Differentiation of Stem Cells. J. Vasc. Res. 49, 447–460 (2012).

    Article  CAS  Google Scholar 

  37. 37.

    Yang, D.G., Liu, L. & Zhou, S.H. MicroRNA alterations in senescent endothelial progenitor cells induced by remnant-like lipoproteins. Chin. Med. J. (Engl) 125, 3479–3484 (2012).

    Google Scholar 

  38. 38.

    Meng, S. et al. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J. Mol. Cell. Cardiol. 53, 64–72 (2012).

    Article  CAS  Google Scholar 

  39. 39.

    Lou, Y. et al. Microrna-210 modified human umbilical vein endothelial cells induce capillary formation. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 26, 587–591 (2012).

    CAS  Google Scholar 

  40. 40.

    Jeong, S.I. et al. MicroRNA microarray analysis of human umbilical vein endothelial cells exposed to benzo(a)pyrene. BioChip J. 6, 191–196 (2012).

    Article  CAS  Google Scholar 

  41. 41.

    Cui, Y. et al. MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1. J. Cell. Physio. 227, 772–783 (2012).

    Article  CAS  Google Scholar 

  42. 42.

    Hong, Y. et al. Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol. J. Biol. Chem. 275, 20911–20919 (2000).

    Article  CAS  Google Scholar 

  43. 43.

    Taron, B.W., Colussi, P.A., Wiedman, J.M., Orlean, P. & Taron, C.H. Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo. J. Biol. Chem. 279, 36083–36092 (2004).

    Article  CAS  Google Scholar 

  44. 44.

    Yang, H. et al. Up-regulation of heme oxygenase-1 by Korean Red Ginseng water extract as a cytoprotective effect in human endothelial cells. J. Ginseng Res. 35, 352–359 (2011).

    Article  CAS  Google Scholar 

  45. 45.

    Yang, H. et al. Expression profile analysis of human umbilical vein endothelial cells treated with salvianolic acid B from Salvia miltiorrhiza. BioChip J. 5, 47–55 (2011).

    Article  Google Scholar 

  46. 46.

    Lee, S.E. et al. Genome-wide profiling in melatoninexposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin. J. Pineal. Res. 54, 80–88 (2012).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yong Seek Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, H., Lee, S.E., Lee, S. et al. Integrated analysis of miRNA and mRNA reveals that acrolein modulates GPI anchor biosynthesis in human primary endothelial cells. BioChip J 7, 11–16 (2013). https://doi.org/10.1007/s13206-013-7103-1

Download citation

Keywords

  • Acrolein
  • microRNA
  • Gene expression profile
  • Diabetic vascular complications
  • GPI anchor biosynthesis