Identification of genetic/epigenetic biomarkers for supporting decision of VOCs exposure

Abstract

Ethylbenzene, toluene and xylene are widely used volatile organic compounds (VOCs). VOCs are dangerous to human health or cause harm to the environment. The assessment of VOC exposure maybe carried out through a number of techniques. One of them, the epigenetic biomarker applies a new technology. Environmental epigenetics focuses on how cells or organisms respond to environmental factors to create altered phenotypes or diseases. In this study, our intention was to conduct an investigation of epigenetic biomarkers in VOCs. For the experiment, we used the DNAs and RNAs from VOC exposed human blood and VOCs treated cell lines. Then, we compared the data using microarray fold change, real-time PCR and methylation specific PCR. As a result, we identified five microRNAs (miR-520g, miR-424, miR-210, miR-21, and miR-142-3p), three methylation regions (SERPINB5, ZC3H3, and PCSK6) and four transcripts (CRCT1, RUNX3, PCDH11X, and PCSK6), which could be used as biomarkers for VOCs, becommings the foundation for a system which can predict VOC exposure.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Probert, C. et al. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J. Gastrointestin. Liver. Dis. 18, 337–343 (2009).

    Google Scholar 

  2. 2.

    Fan, Z. et al. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. Environ. Sci. Technol. 37, 1811–1821 (2003).

    Article  CAS  Google Scholar 

  3. 3.

    Axelsson, G., Barregard, L., Holmberg, E. & Sallsten, G. Cancer incidence in a petrochemical industry area in Sweden. Sci. Total Environ. 408, 4482–4487 (2010).

    Article  CAS  Google Scholar 

  4. 4.

    Park, H. et al. Gene expression profiling of HepG2 cells treated with endocrine disrupting chemicals using the HazChem human array V3. Mol. Cell. Toxicol. 6, 57–63 (2010).

    Article  CAS  Google Scholar 

  5. 5.

    Kim, J.K. et al. Identification of characteristic molecular signature for volatile organic compounds in peripheral blood of rat. Toxicol. Appl. Pharmacol. 250, 162–169 (2011).

    Article  CAS  Google Scholar 

  6. 6.

    De Celis, R., Feria-Velasco, A., Gonzalez-Unzaga, M., Torres-Calleja, J. & Pedron-Nuevo, N. Semen quality of workers occupationally exposed to hydrocarbons. Fertil. Steril. 73, 221–228 (2000).

    Article  Google Scholar 

  7. 7.

    Gerin, M., Siemiatychi, J., Desy, M. & Krewski, D. Associations between several sites of cancer and occupational exposure to benzene, toluene, xylene, and styrene: Results of a case-control study in Montreal. Am. J. Ind. Med. 34, 144–156 (1998).

    Article  CAS  Google Scholar 

  8. 8.

    Lundberg, I. & Milatou-Smith, R. Mortality and cancer incidence among Swedish paint industry workers with long-term exposure to organic solvents. Scand. J. Work Environ. Health 24, 270–275 (1998).

    Article  CAS  Google Scholar 

  9. 9.

    IDLH. Toluene, documentation for immediately dangerous to life or health concentrations. Available at: http://www.cdc.gov/niosh/idlh/108883.html (1996).

    Google Scholar 

  10. 10.

    IDLH. Xylene (o-, m-, p-isomers), documentation for immediately dangerous to life or health concentrations. Available at: http://www.cdc.gov/niosh/idlh/95476.html (1996).

    Google Scholar 

  11. 11.

    Wang, S., Ang, H.M. & Tade, M.O. Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ. Int. 33, 694–705 (2007).

    Article  CAS  Google Scholar 

  12. 12.

    Kansal, A. Sources and reactivity of NMHCs and VOCs in the atmosphere: a review. J. Hazard. Mater. 166, 17–26 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    Pragst, F. Application of solid-phase microextraction in analytical toxicology. Anal. Bioanal. Chem. 388, 1393–1414 (2007).

    Article  CAS  Google Scholar 

  14. 14.

    Wood, M. et al. Recent applications of liquid chromatography-mass spectrometry in forensic science. J. Chromatogr. A. 1130, 3–15 (2006).

    Article  CAS  Google Scholar 

  15. 15.

    Rouseff, R. & Cadwallader, K. Headspace techniques in foods, fragrances and flavors: an overview. Adv. Exp. Med. Biol. 488, 1–8 (2001).

    Article  CAS  Google Scholar 

  16. 16.

    Schnürer, J., Olsson, J. & Börjesson, T. Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet. Biol. 27, 209–217 (1999).

    Article  Google Scholar 

  17. 17.

    Zhou, M., Robards, K., Glennie-Holmes, M. & Helliwell, S. Analysis of volatile compounds and their contribution to flavor in cereals. J. Agric. Food Chem. 47, 3941–3953 (1999).

    Article  CAS  Google Scholar 

  18. 18.

    Eun, J.W. et al. Discriminating the molecular basis of hepatotoxicity using the large-scale characteristic molecular signatures of toxicants by expression profiling analysis. Toxicology 249, 176–183 (2008).

    Article  CAS  Google Scholar 

  19. 19.

    Sarma, S.N., Kim, Y. & Ryu, J. Gene expression profiles of human promyelocytic leukemia cell lines exposed to volatile organic compounds. Toxicology 271, 122–130 (2010).

    Article  CAS  Google Scholar 

  20. 20.

    Yim, W.C., Min, K., Jung, D., Lee, B.M. & Kwon, Y. Cross experimental analysis of microarray gene expression data from volatile organic compounds treated targets. Mol. Cell. Toxicol. 7, 233–241 (2011).

    Article  CAS  Google Scholar 

  21. 21.

    Wang, F., Li, C., Liu, W. & Jin, Y. Modulation of microRNA expression by volatile organic Compounds in mouse lung. Environ. Toxicol. DOI 10.1002 /tox (2012).

    Google Scholar 

  22. 22.

    Baylin, S.B. & Jones, P.A. A decade of exploring the cancer epigenome: biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).

    Article  CAS  Google Scholar 

  23. 23.

    Xing, M. Gene methylation in thyroid tumorigenesis. Endocrinology 148, 948–953 (2007).

    Article  CAS  Google Scholar 

  24. 24.

    Li, M. et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16, 533–546 (2009).

    Article  CAS  Google Scholar 

  25. 25.

    Nakashima, T. et al. Down-regulation of mir-424 contributes to the abnormal angiogenesis via MEK1 and Cyclin E1 in senile aemangioma: its implications to therapy. PLoS One. 5, e14334. DOI: 10.1371/journal. pone.0014334 (2010).

    Article  CAS  Google Scholar 

  26. 26.

    Buffa, F.M. et al. microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res. 71, 5635–5645 (2011).

    Article  CAS  Google Scholar 

  27. 27.

    Duncavage, E., Goodgame, B., Sezhiyan, A., Govindan, R. & Pfeifer, J. Use of microRNA expression levels to predict outcomes in resected stage I non-small cell lung cancer. J. Thorac. Oncol. 5, 1755–1763 (2010).

    Article  Google Scholar 

  28. 28.

    Gee, H.E. et al. The small-nucleolarRNAs commonly used for microRNA normalization correlate with tumour pathology and prognosis. Br. J. Cancer 104, 1168–1177 (2011).

    Article  CAS  Google Scholar 

  29. 29.

    Lawrie, C.H. et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141, 672–675 (2008).

    Article  Google Scholar 

  30. 30.

    Scapoli, L. et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int. J. Immunopathol. Pharmacol. 23, 1229–1234 (2010).

    CAS  Google Scholar 

  31. 31.

    Zeng, L. et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front. Biosci. 3, 1265–1272 (2011).

    Google Scholar 

  32. 32.

    Hong, L. et al. High expression of miR-210 predicts poor survival in patients with breast cancer: A metaanalysis. Gene 507, 135–138 (2012).

    Article  CAS  Google Scholar 

  33. 33.

    Tabon, K.E., Chang, D. & Kuzhikandathil, E.V. Micro-RNA 142-3p Mediates post-transcriptional regulation of D1 dopamine receptor expression. PLoS One. 7, e49288. doi: 10.1371/journal.pone.0049288 (2012).

    Article  Google Scholar 

  34. 34.

    O’Neill, I.D. New insights into the nature of Warthin’s tumour. J. Oral. Pathol. Med. 38, 145–149 (2009).

    Article  Google Scholar 

  35. 35.

    Ko, H.J. et al. DNA methylation of RUNX3 in papillary thyroid cancer. Korean J. Intern. Med. 27, 407–410 (2012).

    Article  CAS  Google Scholar 

  36. 36.

    Choi, M.R. et al. Gene expression during long-term culture of mesenchymal stem cells obtained from patients with amyotrophic lateral sclerosis. BioChip J. 6, 342–353 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seung Yong Hwang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

An, Y.R., Kim, S.J., Yu, SY. et al. Identification of genetic/epigenetic biomarkers for supporting decision of VOCs exposure. BioChip J 7, 1–5 (2013). https://doi.org/10.1007/s13206-013-7101-3

Download citation

Keywords

  • Volatile organic compounds
  • Biomarker
  • Epigenetic
  • MicroRNA
  • Methylation