Skip to main content
Log in

Genomewide transcription profiles altered by BMI-1026 and Roscovitine and its implication in cellular senescence

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinases (CDKs) are highly conserved over evolutionary path and function as master regulators of the cell division cycle. Thus CDK inhibitors have been focused in the drug development for cancer and other cell proliferative disorders. Among these inhibitors Roscovitine is well known compound and under clinical trial currently while far less has been reported on another CDK inhibitor — BMI-1026, designed as a drug candidate also targeting the cell cycle. In this study we tried to define biological effects and possible mechanisms of the two chemicals by analyzing the altered transcriptome profiles when BMI-1026 and Roscovitine are applied on WI-38 cells. Our result revealed both BMI-1026 and Roscovitine produced similar gene expression profiles, where E2F target genes were suppressed in common, including cyclin A, MCM3 and PCNA along with activated p53 pathway. This finding strongly indicates that molecular machineries responsible for other established senescence models are also employed in the changes in WI-38 cells induced by the two CDK inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morgan, D.O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    Article  CAS  Google Scholar 

  2. Malumbres, M. et al. Cyclin-dependent kinases: a family portrait. Nat. Cell Biol. 11, 1275–1276 (2009).

    Article  CAS  Google Scholar 

  3. Sherr, C.J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  Google Scholar 

  4. Fischer, P.M. & Gianella-Borradori, A. Recent progress in the discovery and development of cyclin-dependent kinase inhibitors. Expert Opin. Investig. Drugs 14, 457–477 (2005).

    Article  CAS  Google Scholar 

  5. Shapiro, G.I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 24, 1770–1782 (2006).

    Article  CAS  Google Scholar 

  6. Collins, I. & Garrett, M.D. Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr. Opin. Pharmacol. 5, 366–373 (2005).

    Article  CAS  Google Scholar 

  7. Sausville, E.A. et al. Phase I trial of 72-h continuous infusion UCN-01 in patients with refractory neoplasms. J. Clin. Oncol. 19, 2319–2333 (2001).

    CAS  Google Scholar 

  8. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).

    Article  CAS  Google Scholar 

  9. Meijer, L. & Raymond, E. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc. Chem. Res. 36, 417–425 (2003).

    Article  CAS  Google Scholar 

  10. Rossi, A.G. et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nature Medicine 12, 1056–1064 (2006).

    Article  CAS  Google Scholar 

  11. Meijer, L. et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, CDK2 and CDK5. Eur. J. Biochem. 243, 527–536 (1997).

    Article  CAS  Google Scholar 

  12. Guzi, T. CYC-202 Cyclacel. Curr. Opin. Investig. Drugs 5, 1311–1318 (2004).

    CAS  Google Scholar 

  13. McClue, S.J. et al. In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC 202 (R-roscovitine). Int. J. Cancer 102, 463–468 (2002).

    Article  CAS  Google Scholar 

  14. Aldoss, I.T., Tashi, T. & Ganti, A.K. Seliciclib in malignancies. Expert Opin. Investig. Drugs 18, 1957–1965 (2009).

    Article  CAS  Google Scholar 

  15. Wesierska-Gadek, J. et al. Pleiotropic effects of selective CDK inhibitors on human normal and cancer cells. Biochem. Pharmacol. 76, 1503–1514 (2008).

    Article  CAS  Google Scholar 

  16. Seong, Y.S. et al. Characterization of a novel cyclindependent kinase 1 inhibitor, BMI-1026. Cancer Res. 63, 7384–7391 (2003).

    CAS  Google Scholar 

  17. Seo, H.J. et al. BMI-1026 treatment can induce SAHF formation by activation of Erk1/2. BMB Rep. 41, 523–528 (2008).

    Article  CAS  Google Scholar 

  18. Glickman, M.H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    CAS  Google Scholar 

  19. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    Article  CAS  Google Scholar 

  20. Herbig, U. & Sedivy, J.M. Regulation of growth arrest in senescence: telomere damage is not the end of the story. Mech. Ageing Dev. 127, 16–24 (2006).

    Article  CAS  Google Scholar 

  21. Ben-Porath, L. & Weinberg, R.A. The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Bio. 37, 961–976 (2005).

    Article  CAS  Google Scholar 

  22. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  Google Scholar 

  23. Funayama, R. & Ishikawa, F. Cellular senescence and chromatin structure. Chromosoma 116, 431–440 (2007).

    Article  Google Scholar 

  24. Sikora, E. et al. Impact of cellular senescence signature on ageing research. Ageing Res. Rev. 10, 146–152 (2011).

    Article  CAS  Google Scholar 

  25. Webley, K. et al. Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol. Cell. Biol. 20, 2803–2808 (2000).

    Article  CAS  Google Scholar 

  26. d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  Google Scholar 

  27. Yin, B. et al. Histone H2AX stabilizes broken DNA strands to suppress chromosome breaks and translocations during V(D)J recombination. J. Exp. Med. 206, 2625–2639 (2009).

    Article  CAS  Google Scholar 

  28. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003).

    Article  CAS  Google Scholar 

  29. Kotala, V. et al. Potent induction of wild-type p53-dependent transcription in tumour cells by a synthetic inhibitor of cyclin-dependent kinases. Cell. Mol. Life Sci. 58, 1333–1339 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sahng-June Kwak or Yeon-Sun Seong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Min, C., Kwak, SJ. et al. Genomewide transcription profiles altered by BMI-1026 and Roscovitine and its implication in cellular senescence. BioChip J 6, 362–371 (2012). https://doi.org/10.1007/s13206-012-6408-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-012-6408-9

Keywords

Navigation