The inhibitory effect of phloretin on the formation of Escherichia coli O157:H7 biofilm in a microfluidic system

Abstract

A rapid and simple multiplex method to simultaneously investigate the effects of candidate drugs on the prevention of biofilm formation and to screen the biological activity of antimicrobial agents is urgently needed. Although several types of tools have been proposed for this purpose, conventional methods are still complicated and require long analytical times. This study presents a microfluidic approach to analyze the effect of phloretin on the formation of enterohemorrhagic E. coli O157:H7 biofilm in a single experiment. The microfluidic device is able to generate a continuous concentration gradient of phloretin in the main detection channel. Unlike conventional methods, this technique allows the analysis of the biofilm form of E. coli O157:H7 as an opportunistic pathogen and model organism; subsequently, mature biofilms were treated with phloretin to investigate the minimal biofilm eradication concentration (MBEC). In addition, inhibition assay of bacterial biofilm under concentration gradient is able to screen full concentration instead of point-to-point concentration assay. The results of MBEC determination clearly confirm that a low concentration of the antioxidant phloretin (30–35 μ/mL) significantly reduces biofilm formation, which suggests that phloretin acts as a biofilm inhibitor of E. coli O157:H7. The microfluidic approach for the evaluation of drug candidates could provide important information for the treatment of patients with chronic infection.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Khardori, N. & Yassien, M. Biofilms in device-related infections. J. Ind. Microbiol. 15, 141–147 (1995).

    Article  CAS  Google Scholar 

  2. 2.

    Lin, Y.T., Jangid, K., Whitman, W.B., Coleman, D.C. & Chiu, C.Y. Soil bacterial communities in native and regenerated perhumid montane forests. Applied Soil Ecology 47, 111–118 (2011).

    Article  Google Scholar 

  3. 3.

    Lodise, T.P., Lomaestro, B.M. & Drusano, G.L. Application of antimicrobial pharmacodynamic concepts into clinical practice: Focus on beta-lactam antibiotics — Insights from the society of infectious diseases pharmacists Pharmacotherapy 26, 1320–1332 (2006).

    Article  CAS  Google Scholar 

  4. 4.

    Costerton, J.W., Stewart, P.S. & Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  Google Scholar 

  5. 5.

    Costerton, J.W. et al. Bacterial biofilms in nature and disease. Ann. Rev. Microbiol. 41, 435–464 (1987).

    Article  CAS  Google Scholar 

  6. 6.

    Cerca, N., Martins, S., Pier, G.B., Oliveira, R. & Azeredo, J. The relationship between inhibition of bacterial adhesion to a solid surface by sub-MICs of antibiotics and subsequent development of a biofilm. Res. Microbiol. 156, 650–655 (2005).

    Article  CAS  Google Scholar 

  7. 7.

    Kardas, P., Devine, S., Golembesky, A. & Roberts, C. A systematic review and meta-analysis of misuse of antibiotic therapies in the community. Int. J. Antimicrob. Agents 26, 106–113 (2005).

    Article  CAS  Google Scholar 

  8. 8.

    Hentzer, M. et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148, 87–102 (2002).

    CAS  Google Scholar 

  9. 9.

    Escarpa, A. & Gonzalez, M.C. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J. Chromatogr. A 823, 331–337 (1998).

    Article  CAS  Google Scholar 

  10. 10.

    Tsao, R., Yang, R., Young, J.C. & Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. and Food Chem. 51, 6347–6353 (2003).

    Article  CAS  Google Scholar 

  11. 11.

    Jung, M., Triebel, S., Richling, E. & Erkel, G. Influence of apple polyphenols on inflammatory gene expression. Mol. Nutr. Food Res. 53, 1263–1280 (2009).

    Article  CAS  Google Scholar 

  12. 12.

    Song, J., Kong, H. & Jang, J. Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles. Colloids Sur. B Biointerfaces 82, 651–656 (2011).

    Article  CAS  Google Scholar 

  13. 13.

    Hu, X.F. et al. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials 31, 8854–8863 (2010).

    Article  CAS  Google Scholar 

  14. 14.

    Qian, X.P. et al. Arrays of self-assembled monolayers for studying inhibition of bacterial adhesion. Anal. Chem. 74, 1805–1810 (2002).

    Article  CAS  Google Scholar 

  15. 15.

    Kussell, E., Kishony, R., Balaban, N.Q. & Leibler, S. Bacterial persistence: A model of survival in changing environments. Genetics 169, 1807–1814 (2005).

    Article  Google Scholar 

  16. 16.

    Rennie, R.P., Turnbull, L., Brosnikoff, C. & Cloke, J. First comprehensive evaluation of the MIC evaluator device compared to etest and CLSI reference dilution methods for antimicrobial susceptibility testing of clinical strains of anaerobes and other fastidious bacterial species. J. Clin. Microbiol. 50, 1153–1157 (2012).

    Article  CAS  Google Scholar 

  17. 17.

    Kim, S. et al. A simple colorimetric method for testing antimicrobial susceptibility of biofilmed bacteria. J. Microbiol. 48, 709–711 (2010).

    Article  CAS  Google Scholar 

  18. 18.

    Arya, S.C., Agarwal, N. & Agarwal, S. Effectiveness of bacterial identification and antimicrobial susceptibility testing in a clinical microbiology laboratory working around the clock. Am. J. Clin. Pathol. 134, 346–347 (2010).

    Article  Google Scholar 

  19. 19.

    Brown, D. & Macgowan, A. Harmonization of antimicrobial susceptibility testing breakpoints in Europe: implications for reporting intermediate susceptibility. J. Antimicrob. Chemother. 65, 183–185 (2010).

    Article  CAS  Google Scholar 

  20. 20.

    Park, A., Jeong, H.H., Lee, J., Kim, K.P. & Lee, C.S. Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel. BioChip J. 5, 236–241 (2011).

    Article  CAS  Google Scholar 

  21. 21.

    Kim, J., Hegde, M., Kim, S.H., Wood, T.K. & Jayaraman, A. A microfluidic device for high throughput bacterial biofilm studies. Lab. Chip 12, 1157–1163 (2012).

    Article  CAS  Google Scholar 

  22. 22.

    Kim, K.P. et al. In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device. Lab Chip 10, 3296–3299 (2010).

    Article  CAS  Google Scholar 

  23. 23.

    Joung, H.A. et al. High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal. Chim. Acta 630, 168–173 (2008).

    Article  CAS  Google Scholar 

  24. 24.

    Choi, C.H., Yi, H., Hwang, S., Weitz, D.A. & Lee, C. S. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow. Lab Chip 11, 1477–1483 (2011).

    Article  CAS  Google Scholar 

  25. 25.

    Lee, K.W., Kim, D.O., Lee, H.J. & Lee, C.Y. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food Chem. 51, 6516–6520 (2003).

    Article  CAS  Google Scholar 

  26. 26.

    Xiao, C.T. & Cant, J.P. Glucose transporter in bovine mammary epithelial cells is an asymmetric carrier that exhibits cooperativity and trans-stimulation. Am. J. Physiol. Cell Physiol. 285, C1226–C1234 (2003).

    CAS  Google Scholar 

  27. 27.

    Raja, M.M., Tyagi, N.K. & Kinne, R.K. Phlorizin recognition in a C-terminal fragment of SGLT1 studied by tryptophan scanning and affinity labeling. J. Biol. Chem. 278, 49154–49163 (2003).

    Article  CAS  Google Scholar 

  28. 28.

    Stangl, V. et al. The flavonoid phloretin suppresses stimulated expression of endothelial adhesion molecules and reduces activation of human platelets. J. Nutr. 135, 172–178 (2005).

    CAS  Google Scholar 

  29. 29.

    Lee, J.H. et al. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect. Immun. 79, 4819–4827 (2011).

    Article  CAS  Google Scholar 

  30. 30.

    Chen, C.H. et al. Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels. Anal. Chem. 82, 1012–1019 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jintae Lee or Chang-Soo Lee.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, A., Jeong, HH., Lee, J. et al. The inhibitory effect of phloretin on the formation of Escherichia coli O157:H7 biofilm in a microfluidic system. BioChip J 6, 299–305 (2012). https://doi.org/10.1007/s13206-012-6313-2

Download citation

Keywords

  • Escherichia coli O157:H7
  • Biofilm
  • Phloretin
  • Microfluidic system
  • Minimal biofilm eradication concentration (MBEC)