Correlation between blood glucose and hematocrit: A new estimation methodology


The estimation of hematocrit in the enzyme and mediator configured blood glucose monitoring electrochemical strips is proposed conceptualizing an innovative data mining methodology. This methodology demonstrate assimilating the peak current (IP), and time (tP) to achieve the peak current of the amperometry; as a coordinate point in the indigenously nomenclated HMM (Hematocrit Monitoring Method) IP-tP Array. The array consists of constructing a matrix (9× 7 matrix) that could be extended to a matrix of appreciable size within the computational limitations. The computational results of hematocrit estimation are precise in the experimental range of 10–50% hematocrit volume. A mathematical model for the transient current emanating from an electrochemical strip is also formulated corroborating our experimental results.

This is a preview of subscription content, access via your institution.


  1. 1.

    Heller, A. & Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482–2505 (2008).

    Article  CAS  Google Scholar 

  2. 2.

    Wang, J. Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008).

    Article  CAS  Google Scholar 

  3. 3.

    Heller, A. & Feldman, B. Electrochemistry in diabetes management. Account Chem. Res. 43, 963–973 (2010).

    Article  CAS  Google Scholar 

  4. 4.

    Hones, J., Muller, P. & Surridge, N. The technology behind glucose meters: test strips. Diabetes Technol. Ther. 10, 10–26 (2008).

    Article  Google Scholar 

  5. 5.

    Sittampalam, G. & Wilson, G.S. Surface-modified electrochemical detector for liquid chromatography. Anal. Chem. 55, 1608–1610 (1983).

    Article  CAS  Google Scholar 

  6. 6.

    Szentirmay, M.N. & Martin, C.R. Ion-exchange selectivity of nafion® films on electrode surfaces. Anal. Chem. 56, 1898–1902 (1984).

    Article  CAS  Google Scholar 

  7. 7.

    Harrison, D.J., Turner, R.F.B. & Baltes, H.P. Characterization of perpfluorosulfonic acid polymer coated enzyme electrodes and a miniaturized integrated potentiostat for glucose analysis in whole blood. Anal. Chem. 60, 2002–2007 (1988).

    Article  CAS  Google Scholar 

  8. 8.

    Amine, A., Kauffmann, J.M., Patriarche, G.J. & Guilbault, G.G. Electrochemical behaviour of a lipid modified enzyme electrode. Anal. Lett. 22, 2403–2411 (1989).

    Article  CAS  Google Scholar 

  9. 9.

    Cui, G. et al. Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip. Talanta 54, 1105–1111 (2001).

    Article  CAS  Google Scholar 

  10. 10.

    Gunasingham, H. & Tan, C.H. Carbon paste-tetrathiafulvalene amperometric enzyme electrode for the determination of glucose in flowing systems. Analyst 115, 35–39 (1990).

    Article  CAS  Google Scholar 

  11. 11.

    Clark, J.D.A., Goldberg, L., Jones, K. & Hartog, M. Are blood glucose reagent strips are reliable in renal failure. Diabetic Med. 8, 168–171 (1991).

    Article  CAS  Google Scholar 

  12. 12.

    Huynh, H.T., Kim, J.J. & Won, Y. Non-linear estimation methods for hematocrit density based on changing pattern of transduced anodic current curve. Wseas. Trans. Inf. Sci. App. 5, 1541–1550 (2008).

    Google Scholar 

  13. 13.

    Lin, Y.H., Shen, T.Y. & Chang, A. Reduction of the interferences of biochemical and hematocrit ratio on the determination of whole blood glucose using multiple screen-printed carbon electrode test strips. Anal. Bioanal. Chem. 389, 1623–1631 (2007).

    Article  CAS  Google Scholar 

  14. 14.

    Musholt, P.B. et al. Dynamic electrochemistry corrects for hematocrit interference on blood glucose determinations with patient self-measurement devices. J. Diabetes Sci. Technnol. 5, 1167–1175 (2011).

    Google Scholar 

  15. 15.

    Louie, R.F., Tang, Z., Sutton, D.V., Lee, J.H. & Kost, G.J. Point of care glucose testing: effects of critical variables, influence of reference instruments, and a modular glucose meter design. Arch. Pathol. Lab. Med. 124, 257–266 (2000).

    CAS  Google Scholar 

  16. 16.

    Tang, Z., Lee, J.H., Louie, R.F. & Kost, G.J. Effects of different hematocrit levels on glucose measurements with handheld meters for point-of-care testing. Arch. Pathol. Lab. Med. 124, 1135–1140 (2000).

    CAS  Google Scholar 

  17. 17.

    Kilpatrick, E.S., Rumley, A.G. & Myin, H. The effect of variations in hematocrit, mean cell volume and red blood count on reagent strip tests for glucose. Ann. Clin. Biochem. 30, 485–487 (1993).

    CAS  Google Scholar 

  18. 18.

    Treo, E.F., Felice, C.J., Tirado, M.C., Valentinuzzi, M.E. & Cervantes, D.O. Hematocrit measurement by dielectric spectroscopy. IEEE T. Biomed. Eng. 52, 124–127 (2005).

    Article  Google Scholar 

  19. 19.

    Foster, K.R. & Schwan, H.P. Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17, 25–104 (1989).

    CAS  Google Scholar 

  20. 20.

    Yoo, E.H. & Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors 10, 4558–4576 (2010).

    Article  Google Scholar 

  21. 21.

    Bard, A.J. & Faulkner, L.R. Electrochemical methods fundamentals and applications, Second ed. John Wiley & Sons, Inc., NJ, 2001.

    Google Scholar 

  22. 22.

    Cassidy, J.F., Clinton, C., Breen, W., Foster, R. & O’Donoghue, E. Novel electrochemical device for the detection of cholesterol or glucose. Analyst 118, 415–418 (1993).

    Article  CAS  Google Scholar 

  23. 23.

    Morris, N.A., Cardosi, M.F., Birch, B.J. & Turner, A. P.F. An electrochemical capillary fill device for the analysis of glucose incorporating glucose oxidase and ruthenium (III) hexamine as mediator. Electroanal. 4, 1–9 (1992).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Young-Soo Sohn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tiwari, P.K., Nam, H. & Sohn, YS. Correlation between blood glucose and hematocrit: A new estimation methodology. BioChip J 6, 206–212 (2012).

Download citation


  • Hematocrit
  • Hematocrit estimation
  • Data mining
  • Anemic
  • Biosensor
  • Biosignal