A droplet-based microfluidic device for long-term culture and longitudinal observation of Caenorhabditis elegans

Abstract

A droplet-based microfluidic device for long-term culture and longitudinal observation of Caenorhabditis elegans was presented. The worms were encapsulated in W/O droplets and controllably introduced into separate chambers, where the medium/oil or medium/air interface can be manipulated by a gravity-actuated technique, for lifelong culture. This device also contained clamp structures for reversibly immobilization of each worm separately, and thus we were able to track more details about each worm. Several phenotypes of worms were monitored from their fourth larva stage to death. The relationship between worm body length, stroke frequency and lifespan with this device was then studied. This device had a potential in various longitudinal researches on C. elegans including aging, drug screening, toxicity evaluation and etc.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Consortium (The C. elegans sequencing consortium). Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282, 2012–2018 (1998).

  2. 2.

    Hulme, S.E. & Whitesides, G.M. Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research. Angew. Chem. Int. Edit. 50, 4774–4807 (2011).

    Article  CAS  Google Scholar 

  3. 3.

    Wolff, S. & Dillin, A. The trifecta of aging in Caenorhabditis elegans. Exp. Gerontol. 41, 894–903 (2006).

    Article  Google Scholar 

  4. 4.

    Drake, J., Link, C.D. & Butterfield, D.A. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol. Aging 24, 415–420 (2003).

    Article  CAS  Google Scholar 

  5. 5.

    Pinkston, J.M., Garigan, D., Hansen, M. & Kenyon, C. Mutation that increase the life span of C-elegans inhibit tumor growth. Science 313, 971–975 (2006).

    Article  CAS  Google Scholar 

  6. 6.

    Kaletta, T. & Hengartner, M.O. Finding function in novel targets: C-elegans as a model organism. Nat. Rev. Drug Discov. 5, 387–398 (2006).

    Article  CAS  Google Scholar 

  7. 7.

    Shi, W.W., Qin, J.H., Ye, N.N. & Lin, B.C. Dropletbased microfluidic system for individual Caenorhabditis elegans assay. Lab. Chip 8, 1432–1435 (2008).

    Article  CAS  Google Scholar 

  8. 8.

    Chronis, N., Zimmer, M. & Bargmann, C.I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods 4, 727–731 (2007).

    Article  CAS  Google Scholar 

  9. 9.

    Arous, J.B., Tanizawa, Y., Rabinowitch, I., Chatenay, D. & Schafer, W.R. Automated imaging of neuronal activity in freely behaving Caenorhabditis elegans. J. Neurosci. Methods 187, 229–234 (2010).

    Article  Google Scholar 

  10. 10.

    Shi, W.W. et al. Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans. Lab. Chip 10, 2855–2863 (2010).

    Article  CAS  Google Scholar 

  11. 11.

    Chung, K., Crane, M.M. & Lu, H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat. Method 5, 637–643 (2008).

    Article  CAS  Google Scholar 

  12. 12.

    Lockery, S.R. et al. Artificial dirt: microfluidic substrates for nematode neurobiology and behavior. J. Neurophysiol. 99, 3136–3143 (2008).

    Article  CAS  Google Scholar 

  13. 13.

    Herndon, L.A. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C-elegans. Nature 419, 808–814 (2002).

    Article  CAS  Google Scholar 

  14. 14.

    Johnston, J., Iser, W.B., Chow, D.K., Goldberg, I.G. & Wolkow, CA. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues. PLoS One 3, e2821 (2008).

    Article  Google Scholar 

  15. 15.

    Allen, P.B. et al. Single-synapse ablation and longterm imaging in live C. elegans. J. Neurosci. Methods 173, 20–26 (2008).

    Article  Google Scholar 

  16. 16.

    Jenifer, C.T. et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol. 15, 427–437 (2008).

    Article  Google Scholar 

  17. 17.

    Hulme, S.E. et al. Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab. Chip 10, 589–597 (2010).

    Article  CAS  Google Scholar 

  18. 18.

    Krajniak, J. & Lu, H. Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab. Chip 10, 1862–1868 (2010).

    Article  CAS  Google Scholar 

  19. 19.

    Chung, K. et al. Microfluidic chamber arrays for wholeorganism behavior-based chemical screening. Lab. Chip 11, 3689–3697 (2011).

    Article  CAS  Google Scholar 

  20. 20.

    Zhang, K. et al. Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples. Anal. Chem. 83, 8029–8034 (2011).

    Article  CAS  Google Scholar 

  21. 21.

    Zhang, K. et al. On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase. Lab. Chip 11, 1271–1275 (2011).

    Article  CAS  Google Scholar 

  22. 22.

    Yamada, H. et al. Fabrication of gravity-driven microfluidic device. Rev. Sci. Instrum. 79, 124301 (2008).

    Article  CAS  Google Scholar 

  23. 23.

    Huh, D. et al. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal. Chem. 79, 1369–1376 (2007).

    Article  CAS  Google Scholar 

  24. 24.

    Liu, J.J. et al. Using a circular groove surrounded inlet to generate monodisperse droplets inside a microfluidic chip in a gravity-driven manner. J. Micromech. Microeng. 18, 095014 (2008).

    Article  Google Scholar 

  25. 25.

    Zhang, K. et al. A gravity-actuated technique for flexible and portable microfluidic droplet manipulation. Microfluid. Nanofluid. 9, 995–1001 (2010).

    Article  CAS  Google Scholar 

  26. 26.

    Zhang, Z. et al. Microchemostat-microbial continuous culture in a polymer-based instrumented microbioreactor. Lab. Chip 6, 906–913 (2006).

    Article  CAS  Google Scholar 

  27. 27.

    He, T.X. et al. A modified microfluidic chip for fabrication of paclitaxel-loaded poly(L-lactic acid) microspheres. Microfluid Nanofluid 10, 1289–1298 (2011).

    Article  CAS  Google Scholar 

  28. 28.

    Weibel, D.B., DiLuzio, W.R. & Whitesides, G.M. Microfabrication meets microbiology. Nat. Rev. Micro- biol. 5, 209–218 (2007).

    Article  CAS  Google Scholar 

  29. 29.

    Xia, Y.N. & Whitesides, G.M. Soft lithography. Angew. Chem. Int. Edit. 37, 550–575 (1998).

    Article  CAS  Google Scholar 

  30. 30.

    Shook, D.R. & Johnson, T.E. Quantitative trait loci affecting survival and fertility-related traits in Caenorhabditis elegans show genotype-environment interactions, pleiotropy and epistasis. Genetics 153, 1233–1243 (1999).

    CAS  Google Scholar 

  31. 31.

    Wang, D.Y. & Xing, X.J. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J. Environ. Sci. 20, 1132–1137 (2008).

    Article  CAS  Google Scholar 

  32. 32.

    Huang, C., Xiong, C.J. & Kornfled, K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. P. Natl. Acad. Sci. USA 101, 8084–8089 (2004).

    Article  CAS  Google Scholar 

  33. 33.

    Stiernagle, T. Maintenance of C. elegans. WormBook, ed, The C. elegans Research Community, Worm-Book (2006).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qionglin Liang or Guoan Luo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ying, D., Zhang, K., Li, N. et al. A droplet-based microfluidic device for long-term culture and longitudinal observation of Caenorhabditis elegans . BioChip J 6, 197–205 (2012). https://doi.org/10.1007/s13206-012-6301-6

Download citation

Keywords

  • Caenorhabditis elegans
  • Lifespan
  • Microfluidic
  • Chip
  • Droplet
  • Long-term culture