Skip to main content
Log in

Adenovirus-mediated heme oxygenase-1 gene transfer to neonatal porcine islet-like cluster cells: the effects on gene expression and protection from cell stress

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Porcine islet xenotransplantation is a promising strategy for the treatment of diabetes that overcomes donor shortages. However, islet xenografts are susceptible to oxidative stress and apoptosis. Heme oxygenase-1 (HO-1) has been shown to protect cells from oxidative stress, apoptosis and inflammation. Here, we investigated whether introduction of human HO-1 (hHO-1) into neonatal porcine islet-like cell clusters (NPCCs) can induce beneficial transcriptional changes in NPCCs against cellular stress. NPCCs were transduced with either adenovirus-HO-1 (Ad-HO-1) or control adenovirus-GFP (Ad-GFP). After treatment with hydrogen peroxide (H2O2) for 24 hours, nitrite oxide (NO) production assays were performed to detect oxidative stress. Microarray analysis was performed using a pig oligonucleotide 44 K gene chip. We profiled transcriptional changes to apoptosis, oxidant and inflammatory genes, and real-time PCR analysis was also performed to confirm the microarray results. Survival of NPCCs after treatment with H2O2 was significantly higher in the Ad-HO-1 group (p<0.001), and NO production also decreased in the Ad-HO-1 group (p<0.01). The microarray results showed that the expression of pro-apoptosis genes such as CASP3, CASP7, CASP10, CIDE-B and CIDE-C was significantly decreased in the Ad-HO-1 virus group (CASP10; p<0.05, CASP3, CIDE-C; p<0.01, CASP7, CIDE-B; p<0.001). We also found that the expression of oxidative stresses genes including COX1, COX2, CYB5A, SDHD and NOS2 was decreased, and that the anti-oxidant genes Gpx1 and SOD2 were increased in the Ad-HO-1 group (NOS2; p<0.05, COXI, COX2, CYB5A, SDHD, SOD2, GPX1; p<0.001). However, inflammatory gene expression was not significantly changed. Realtime PCR analysis confirmed the results of the microarray analysis. These results shed light on the underlying mechanisms of the protective effects of hHO-1 on porcine islets from cellular stresses and suggest that hHO-1 could be a promising target gene for the production of transgenic pigs that confer improved islet xenograft survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nilsson, B. The instant blood-mediated inflammatory reaction in xenogeneic islet transplantation. Xenotransplantation 15, 96–98 (2008).

    Article  Google Scholar 

  2. Rood, P.P., Buhler, L.H., Bottino, R., Trucco, M. & Cooper, D.K. Pig-to-nonhuman primate islet xenotransplantation: a review of current problems. Cell Transplant 15, 89–104 (2006).

    Article  CAS  Google Scholar 

  3. van der Windt, D.J., Bottino, R., Casu, A., Campanile, N. & Cooper, D.K. Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation 14, 288–297 (2007).

    Article  Google Scholar 

  4. Tu, C.F., Kuo, C.H. & Juang, J.H. Effects of heme oxygenase-1 transgenic islets on transplantation. Transplant Proc. 37, 3463–3467 (2005).

    Article  CAS  Google Scholar 

  5. Cowan, P.J. & d’Apice, A.J. Subcutaneous pig islet xenografts: getting under your skin to cure diabetes? Transplantation 90, 1050–1051 (2010).

    Article  Google Scholar 

  6. Chen, X.B. et al. Influence of heme oxygenase-1 gene transfer on the viability and function of rat islets in in vitro culture. World J. Gastroenterol. 13, 1053–1059 (2007).

    CAS  Google Scholar 

  7. Korsgren, O. et al. Current status of clinical islet transplantation. Transplantation 79, 1289–1293 (2005).

    Article  Google Scholar 

  8. Li, Y.X., Li, G., Dong, W.P., Lu, D.R. & Tan, J.M. Protection of human islets from induction of apoptosis and improved islet function with HO-1 gene transduction. Chin. Med. J. (Engl.) 119, 1639–1645 (2006).

    CAS  Google Scholar 

  9. Lee, S. et al. Hydrogen peroxide increases human leukocyte adhesion to porcine aortic endothelial cells via NFkappaB-dependent up-regulation of VCAM-1. Int. Immunol. 19, 1349–1359 (2007).

    Article  CAS  Google Scholar 

  10. Rosen, G.M., Pou, S., Ramos, C.L., Cohen, M.S. & Britigan, B.E. Free radicals and phagocytic cells. FASEB J. 9, 200–209 (1995).

    CAS  Google Scholar 

  11. Rhee, S.G. Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 31, 53–59 (1999).

    CAS  Google Scholar 

  12. Finkel, T. Oxygen radicals and signaling. Curr. Opin. Cell. Biol. 10, 248–253 (1998).

    Article  CAS  Google Scholar 

  13. Rhee, S.G., Kang, S.W., Netto, L.E., Seo, M.S. & Stadtman, E.R. A family of novel peroxidases, peroxiredoxins. Biofactors 10, 207–209 (1999).

    Article  CAS  Google Scholar 

  14. Calabrese, E.J. & Canada, A.T. Catalase: its role in xenobiotic detoxification. Pharmacol. Ther. 44, 297–307 (1989).

    Article  CAS  Google Scholar 

  15. Arthur, J.R. The glutathione peroxidases. Cell Mol. Life Sci. 57, 1825–1835 (2000).

    Article  CAS  Google Scholar 

  16. Ollinger, R. & Pratschke, J. Role of heme oxygenase-1 in transplantation. Transpl. Int. 23, 1071–1081 (2010).

    Article  Google Scholar 

  17. Chen, X. et al. Protective effect of heme oxygenase-1 to pancreas islet xenograft. J. Surg. Res. 164, 336–343 (2010).

    Article  CAS  Google Scholar 

  18. Goldberg, A. et al. Toll-like receptor 4 suppression leads to islet allograft survival. FASEB J. 21, 2840–2848 (2007).

    Article  CAS  Google Scholar 

  19. Gunther, L. et al. Carbon monoxide protects pancreatic beta-cells from apoptosis and improves islet function/survival after transplantation. Diabetes 51, 994–999 (2002).

    Article  CAS  Google Scholar 

  20. Angermayr, B. et al. Heme oxygenase attenuates oxidative stress and inflammation, and increases VEGF expression in portal hypertensive rats. J. Hepatol. 44, 1033–1039 (2006).

    Article  CAS  Google Scholar 

  21. Paine, A., Eiz-Vesper, B., Blasczyk, R. & Immenschuh, S. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. Pharmacol. 80, 1895–1903 (2010).

    Article  CAS  Google Scholar 

  22. Emamaullee, J.A., Shapiro, A.M., Rajotte, R.V., Korbutt, G. & Elliott, J.F. Neonatal porcine islets exhibit natural resistance to hypoxia-induced apoptosis. Transplantation 82, 945–952 (2006).

    Article  Google Scholar 

  23. Bredt, D.S. & Snyder, S.H. Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63, 175–195 (1994).

    Article  CAS  Google Scholar 

  24. Dawson, V.L. Nitric oxide: role in neurotoxicity. Clin. Exp. Pharmacol. Physiol. 22, 305–308 (1995).

    Article  CAS  Google Scholar 

  25. Darville, M.I. & Eizirik, D.L. Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia 41, 1101–1108 (1998).

    Article  CAS  Google Scholar 

  26. Aktan, F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 75, 639–653 (2004).

    Article  CAS  Google Scholar 

  27. Beck, K.F. et al. Inducible NO synthase: role in cellular signalling. J. Exp. Biol. 202, 645–653 (1999).

    CAS  Google Scholar 

  28. Steller, H. Mechanisms and genes of cellular suicide. Science 267, 1445–1449 (1995).

    Article  CAS  Google Scholar 

  29. Cohen, G.M. Caspases: the executioners of apoptosis. Biochem J. 326, 1–16 (1997).

    CAS  Google Scholar 

  30. Duan, H. et al. ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. J. Biol. Chem. 271, 16720–16724 (1996).

    Article  CAS  Google Scholar 

  31. Lippke, J.A., Gu, Y., Sarnecki, C., Caron, P.R. & Su, M.S. Identification and characterization of CPP32/Mch2 homolog 1, a novel cysteine protease similar to CPP32. J. Biol. Chem. 271, 1825–1828 (1996).

    Article  CAS  Google Scholar 

  32. Chandler, J.M., Cohen, G.M. & MacFarlane, M. Different subcellular distribution of caspase-3 and caspase-7 following Fas-induced apoptosis in mouse liver. J. Biol. Chem. 273, 10815–10818 (1998).

    Article  CAS  Google Scholar 

  33. MacFarlane, M., Cain, K., Sun, X.M., Alnemri, E.S. & Cohen, G.M. Processing/activation of at least four interleukin-1beta converting enzyme-like proteases occurs during the execution phase of apoptosis in human monocytic tumor cells. J. Cell Biol. 137, 469–479 (1997).

    Article  CAS  Google Scholar 

  34. Thornberry, N.A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  Google Scholar 

  35. Fernandes-Alnemri, T. et al. Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res. 55, 6045–6052 (1995).

    CAS  Google Scholar 

  36. Korbutt, G.S. et al. Large scale isolation, growth, and function of porcine neonatal islet cells. J. Clin. Invest 97, 2119–2129 (1996).

    Article  CAS  Google Scholar 

  37. He, T.C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  Google Scholar 

  38. Hwang, J.I. et al. Molecular cloning and characterization of a novel phospholipase C, PLC-eta. Biochem J. 389, 181–186 (2005).

    Article  CAS  Google Scholar 

  39. Yeom, H.J. et al. Expression analysis of early responserelated genes in rat liver epithelial cells exposed to thioacetamide in vitro. J. Vet. Med. Sci. 71, 719–727 (2009).

    Article  CAS  Google Scholar 

  40. Yao, B. et al. Accuracy of cDNA microarray methods to detect small gene expression changes induced by neuregulin on breast epithelial cells. BMC Bioinformatics 5, 99 (2004).

    Article  Google Scholar 

  41. Zuniga, E.I., McGavern, D.B., Pruneda-Paz, J.L., Teng, C. & Oldstone, M.B. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nat. Immunol. 5, 1227–1234 (2004).

    Article  CAS  Google Scholar 

  42. Iacobuzio-Donahue, C.A. et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am. J. Pathol. 162, 1151–1162 (2003).

    Article  CAS  Google Scholar 

  43. Park, N., Katikaneni, P., Skern, T. & Gustin, K.E. Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. J. Virol. 82, 1647–1655 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeseok Yang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeom, HJ., Ro, H., Park, S.J. et al. Adenovirus-mediated heme oxygenase-1 gene transfer to neonatal porcine islet-like cluster cells: the effects on gene expression and protection from cell stress. BioChip J 6, 56–64 (2012). https://doi.org/10.1007/s13206-012-6108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-012-6108-5

Keywords

Navigation