A PNA microarray platform for miRNA expression profiling using on-chip labeling technology


MicroRNAs (miRNAs) are short, non-coding RNAs that play a critical role in development, metabolism and other fundamental biological processes, and are also important in diseases such as cancer. To study miRNA expression levels in a systematic and parallel manner, we have developed a highly sensitive, specific and reproducible microarray for miRNA expression profiling using the Peptide Nucleic Acids (PNA) probes which have higher affinity and greater specificity for binding to RNA than do DNA probes. We developed a PNA microarray assay that optimizes PNA probe, hybridization conditions, and on-PNA chip labeling method. In this PANArray™ miRNA method, unlabeled RNA is hybridized to the PNA microarray and labeled by enzymatic ligation of pCp-Cy3 on the chip. This assay showed high reproducibility and low cross-hybridization for miRNAs belonging to the let-7 family and the miR-181 family, which differ by a single nucleotide. The PNA microarray (PANArray™ miRNA) is a rapid throughput technology for analyzing expression profiles with high fidelity, and could prove to be a powerful tool for cancer research, diagnosis and prognosic assessment.

This is a preview of subscription content, access via your institution.


  1. 1.

    Castoldi, M. et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12, 913–920 (2006).

    Article  CAS  Google Scholar 

  2. 2.

    Griffiths-Jones, S., Saini, H.K., van Dongen, S. & Enright, A.J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–158 (2008).

    Article  CAS  Google Scholar 

  3. 3.

    Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005).

    Article  Google Scholar 

  4. 4.

    Wark, A.W., Lee, H.J. & Corn, R.M. Multiplexed detection methods for profiling microRNA expression in biological samples. Angew. Chem. Int. Edit. 47, 644–652 (2008).

    Article  CAS  Google Scholar 

  5. 5.

    Chen, J. et al. Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Res. 36, e87 (2008).

    Article  Google Scholar 

  6. 6.

    Cummins, J.M. et al. The colorectal microRNAome. Proc. Natl. Acad. Sci. USA 103, 3687–3692 (2006).

    Article  CAS  Google Scholar 

  7. 7.

    Allawi, H.T. et al. Quantitation of microRNAs using a modified Invader assay. RNA 10, 1153–1161 (2004).

    Article  CAS  Google Scholar 

  8. 8.

    Wang, H., Ach, R.A. & Curry, B. Direct and sensitive miRNA profiling from low-input total RNA. RNA 13, 151–159 (2007).

    Article  CAS  Google Scholar 

  9. 9.

    Neely, L.A. et al. A single-molecule method for the quantitation of microRNA gene expression. Nat. Methods 3, 41–46 (2006).

    Article  CAS  Google Scholar 

  10. 10.

    Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  Google Scholar 

  11. 11.

    Bernheim, A. et al. High-resolution array comparative genomic hybridization analysis of human bronchial and salivary adenoid cystic carcinoma. Lab. Invest. 88, 464–473 (2008).

    Article  CAS  Google Scholar 

  12. 12.

    Jeffrey, S.S. Cancer biomarker profiling with micro- RNAs. Nat. Biotechnol. 26, 400–401 (2008).

    Article  CAS  Google Scholar 

  13. 13.

    Lodes, M.J. et al. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS ONE 4, e6229 (2009).

    Article  Google Scholar 

  14. 14.

    Calin, G.A. & Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

    Article  CAS  Google Scholar 

  15. 15.

    Yin, J.Q., Zhao, R.C. and Morris, K.V. Profiling micro- RNA expression with microarrays. Trends Biotechnol. 26, 70–76 (2008).

    Article  CAS  Google Scholar 

  16. 16.

    Freeman, W.M., Robertson, D.J. & Vrana, K.E. Fundamentals of DNA hybridization arrays for gene expression analysis. BioTechniques. 29, 1042–1055 (2000).

    CAS  Google Scholar 

  17. 17.

    Hashino, K. et al. Application of a lanthanide fluorescent chelate label for detection of single-nucleotide mutations with peptide nucleic acid probes. Anal. Biochem. 355, 278–284 (2006).

    Article  CAS  Google Scholar 

  18. 18.

    Hoheisel, J.D. Microarray technology: beyond transcript profiling and genotype analysis. Nat. Rev. Genet. 7, 200–210 (2006).

    Article  CAS  Google Scholar 

  19. 19.

    Jang, H. et al. Oligonucleotide chip for detection of Lamivudine-resistant hepatitis B virus. J. Clin. Microbiol. 42, 4181–4188 (2004).

    Article  CAS  Google Scholar 

  20. 20.

    Shingara, J. et al. An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA 11, 1461–1470 (2005).

    Article  CAS  Google Scholar 

  21. 21.

    Vorwerk, S. et al. Microfluidic-based enzymatic onchip labeling of miRNAs. New Biotechnol. 25, 142–149 (2008).

    Article  CAS  Google Scholar 

  22. 22.

    Lee, H. et al. Peptide nucleic acid synthesis by novel amide formation. Org. Lett. 9, 3291–3293 (2007).

    Article  CAS  Google Scholar 

  23. 23.

    Choi, J.J., Kim, C. & Park, H. Petide nucleic acidbased array for detecting and genotyping human papillomaviruses. J. Clin. Microbiol. 47, 1785–1790 (2009).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Heekyung Park.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, H., Choi, Jj., Cho, M. et al. A PNA microarray platform for miRNA expression profiling using on-chip labeling technology. BioChip J 6, 25–33 (2012). https://doi.org/10.1007/s13206-012-6104-9

Download citation


  • miRNA
  • miRNA expression
  • miRNA expression array
  • PNA
  • PNA array