An universal biolinker for immobilization of protein and oligoDNA on a glass slide chip

Abstract

We have previously shown that a Calixarene derivative was an excellent agent for protein immobilization on a solid phase. We further characterized the recognition mechanism between the ‘host’ Calixarene derivative and ‘guest’ molecules in this study. The rate of complex formation of Calixcrown with amino acids informed that Calixcrown had the strongest interaction with Arg among the tested amino acids. In order to confirm that Arg is an effective residue in immobilization of protein on Calixcrown-coated glass, several human recombinant superoxide dismutase tagged with different numbers of Arg or Lys were generated. The recombinant protein tagged with longer Arg was immobilized better than the ones tagged with shorter Arg or Lys. We also tested if Calixcrown can immobilize oligoDNA as efficiently as it does protein. Calixcrown most strongly captured homo-dGTP oligoDNA among the four homo-oligoDNAs. When Calixcrown chip was applied to detect single nucleotide polymorphism, it differentiated one base pair mismatch of the double helix oligoDNA. Thus, Calixarene derivative linker molecule can be used as an efficient immobilization agent for both protein and oligoDNA with the right orientation on a solid phase.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Anderson, K.S. et al. Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J. Proteome Res. 7, 1490–1499 (2008).

    Article  CAS  Google Scholar 

  2. 2.

    Lueking, A. et al. Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270, 103–111 (1999).

    Article  CAS  Google Scholar 

  3. 3.

    Blohm, D.H. & Guiseppi-Elie, A. New developments in microarray technology. Curr. Opin. In Biotechnol. 12, 41–47 (2001).

    Article  CAS  Google Scholar 

  4. 4.

    Jain, K.K. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 53, 2002–2009 (2007).

    Article  CAS  Google Scholar 

  5. 5.

    Høyer-Hansen, G. et al. Loss of ELISA specificity due to biotinylation of monoclonal antibodies. J. Immunol. Methods 235, 91–99 (2000).

    Article  Google Scholar 

  6. 6.

    Turkova, J. Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatography B 722, 11–31 (1999).

    Article  CAS  Google Scholar 

  7. 7.

    Nakagawa, T. et al. Fabrication of amino silane-coated microchip for DNA extraction from whole blood. J. Biotechnol. 116, 105–111 (2005).

    Article  CAS  Google Scholar 

  8. 8.

    MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  Google Scholar 

  9. 9.

    Lee, Y. et al. ProteoChip: a highly sensitive protein microarray prepared by a novel method of protein immobilization for application of protein-protein interaction studies. Proteomics 3, 2289–2304 (2003).

    Article  CAS  Google Scholar 

  10. 10.

    Oh, S.W. et al. Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB J. 19, 1335–1337 (2005).

    CAS  Google Scholar 

  11. 11.

    Mandolini, L. & Ungaro, R. Calixarenes in action. Imperial College press, London, U.K. (2000).

    Book  Google Scholar 

  12. 12.

    Miyamoto, S. & Kollman, P.A. Molecular dynamics studies of calixspherand complexes with alkali metal cations: calculation of the absolute and relative free energies of binding of cations to a calixspherand. J. Am. Chem. Soc. 114, 3668–3674 (1992).

    Article  CAS  Google Scholar 

  13. 13.

    Cheng, Y. & Hercules, D.M. Measurement of chiral complexes of cyclodextrins and amino acids by electrospray ionization time-of-flight mass spectrometry. J. Mass Spectrom. 36, 834–836 (2001).

    Article  CAS  Google Scholar 

  14. 14.

    Stone, M.M., Franz, H.F. & Lebrilla, C.B. Non-covalent calixarene-amino acid complexes formed by MALDI-MS. J. Am. Soc. Mass Spectrom. 13, 964–974 (2002).

    Article  CAS  Google Scholar 

  15. 15.

    Philip, T. et al. Confirmation of the assignment of human SOD gene to chromosome 21q22. Cytogenet. Cell Genet. 22, 521–523 (1978).

    Article  CAS  Google Scholar 

  16. 16.

    Kudo, Y., Maeda, S., Tikida, S. & Kudo, M. Colorimetric chiral recognition by a molecular sensor. Nature 382, 522–524 (1996).

    Article  Google Scholar 

  17. 17.

    Hiller, R. et al. Microarrayed allergen molecules: disgnostic gatekeepers for allergy treatment. FASEB J. 16, 414–416 (2002).

    CAS  Google Scholar 

  18. 18.

    Busse, P.J., Järvinen, K.M., Vila, L., Beyer, K. & Sampson, H.A. Identification of sequential IgE-binding epitopes on bovine alpha (s2)-casein in cow’s milk allergic patients. Int. Arch. Allergy Immunol. 129, 93–96 (2002).

    Article  CAS  Google Scholar 

  19. 19.

    Sasakura, Y. et al. Protein microarray system for detecting protein-protein interactions using an anti-Histag antibody and fluorescence scanning: effects of the heme redox state on protein-protein interactions of heme-regulated phosphodiesterase from Escherichia coli. Anal. Chem. 76, 6521–6527 (2004).

    Article  CAS  Google Scholar 

  20. 20.

    Schug, K.A. & Lindner, W. Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosphonate and sulfonate residues. Chem. Rev. 105, 67–114 (2005).

    Article  CAS  Google Scholar 

  21. 21.

    Perreault, D.M., Cabell, L.A. & Anslyn, E.V. Using guanidinium groups for the recognition of RNA and as catalysts for the hydrolysis of RNA. Bioorg. Med. Chem. 5, 1209–1220 (1997).

    Article  CAS  Google Scholar 

  22. 22.

    Isaksson, A. et al. Discovery, scoring and utilization of human single nucleotide polymorphisms: a multidisciplinary problem. Eur. J. Hum. Genet. 8, 154–156 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eui Yul Choi.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, H.J., Oh, S.W., Kim, S.J. et al. An universal biolinker for immobilization of protein and oligoDNA on a glass slide chip. BioChip J 6, 1–9 (2012). https://doi.org/10.1007/s13206-012-6101-z

Download citation

Keywords

  • Calixarene derivative
  • OligoDNA
  • Oriented immobilization
  • Protein chip
  • SNP