Skip to main content
Log in

Methylglyoxal-mediated alteration of gene expression in human endothelial cells

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Endothelial dysfunction is an important factor in the development of vascular diseases such as atherosclerosis, hypertension and diabetes. Methylglyoxal (MG) is a highly reactive dicarbonyl metabolite that is an extremely toxic glucose degradation product with strong oxidative activity. MG is involved in the pathogenesis of vascular complications of diabetes. Several studies have reported increased MG levels in pathology models of vascular injury. The present study investigated the genome-wide transcriptional responses of human umbilical vein endothelial cells (HUVECs) exposed to MG by microarray gene expression profiling. As a result, we identified 1,624 genes that were 1.5-fold up-or down-regulated within 12 h of MG treatment. The differentially expressed genes that were dysregulated in many biological processes included inflammatory responses, cell cycle, apoptosis, and cell adhesion. These results demonstrate the MG induced genome-wide alterations in expression profile in human endothelial cells and indicate that MG may cause cytotoxicity and tissue injury in the human endothelium. The data supports the view that MG-stimulated changes in gene expression contribute to the development of vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schalkwijk, C.G. & Stehouwer, C.D. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin. Sci. (Lond) 109, 143–159 (2005).

    Article  CAS  Google Scholar 

  2. Victor, V.M. et al. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr. Pharm. Des. 15, 2988–3002 (2009).

    Article  CAS  Google Scholar 

  3. Ray, S. & Ray, M. Isolation of methylglyoxal synthase from goat liver. J. Biol. Chem. 256, 6230–6233 (1981).

    CAS  Google Scholar 

  4. Phillips, S.A. & Thornalley, P.J. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur. J. Biochem. 212, 101–105 (1993).

    Article  CAS  Google Scholar 

  5. Thornalley, P.J., Langborg, A. & Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344Pt 1, 109–116 (1999).

    Article  CAS  Google Scholar 

  6. Casazza, J.P., Felver, M.E. & Veech, R.L. The metabolism of acetone in rat. J. Biol. Chem. 259, 231–236 (1984).

    CAS  Google Scholar 

  7. Yu, P.H., Wright, S., Fan, E.H., Lun, Z.R. & Gubisne-Harberle, D. Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim. Biophys. Acta 1647, 193–199 (2003).

    CAS  Google Scholar 

  8. Ahmed, M.U., Brinkmann Frye, E., Degenhardt, T.P., Thorpe, S.R. & Baynes, J.W. N-epsilon-(carboxyethyl) lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem. J. 324(Pt 2), 565–570 (1997).

    CAS  Google Scholar 

  9. Brownlee, M. Lilly Lecture 1993. Glycation and diabetic complications. Diabetes 43, 836–841 (1994).

    CAS  Google Scholar 

  10. Bourajjaj, M., Stehouwer, C.D., van Hinsbergh, V.W. & Schalkwijk, C.G. Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochem. Soc. Trans. 31, 1400–1402 (2003).

    Article  CAS  Google Scholar 

  11. Karachalias, N., Babaei-Jadidi, R., Ahmed, N. & Thornalley, P.J. Accumulation of fructosyl-lysine and advanced glycation end products in the kidney, retina and peripheral nerve of streptozotocin-induced diabetic rats. Biochem. Soc. Trans. 31, 1423–1425 (2003).

    Article  CAS  Google Scholar 

  12. Schleicher, E.D., Wagner, E. & Nerlich, A.G. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J. Clin. Invest. 99, 457–468 (1997).

    Article  CAS  Google Scholar 

  13. Kilhovd, B.K. et al. Increased serum levels of the specific AGE-compound methylglyoxal-derived hydroimidazolone in patients with type 2 diabetes. Metabolism 52, 163–167 (2003).

    Article  CAS  Google Scholar 

  14. Shinohara, M. et al. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest. 101, 1142–1147 (1998).

    Article  CAS  Google Scholar 

  15. Beisswenger, P.J. et al. Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes 54, 3274–3281 (2005).

    Article  CAS  Google Scholar 

  16. Wang, X., Desai, K., Chang, T. & Wu, L. Vascular methylglyoxal metabolism and the development of hypertension. J. Hypertens. 23, 1565–1573 (2005).

    Article  CAS  Google Scholar 

  17. Wang, X., Desai, K., Clausen, J.T. & Wu, L. Increased methylglyoxal and advanced glycation end products in kidney from spontaneously hypertensive rats. Kidney Int. 66, 2315–2321 (2004).

    Article  CAS  Google Scholar 

  18. Zeng, J. & Davies, M.J. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins. Chem. Res. Toxicol. 18, 1232–1241 (2005).

    Article  CAS  Google Scholar 

  19. Lapolla, A. et al. Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin. Chem. Lab. Med. 41, 1166–1173 (2003).

    Article  CAS  Google Scholar 

  20. Meng, Q.H. et al. Increased plasma methylglyoxal level, inflammation, and vascular endothelial dysfunction in diabetic nephropathy. Clin. Biochem. 44, 307–311 (2011).

    Article  Google Scholar 

  21. Fukunaga, M. et al. Methylglyoxal induces apoptosis through activation of p38 MAPK in rat Schwann cells. Biochem. Biophys. Res. Commun. 320, 689–695 (2004).

    Article  CAS  Google Scholar 

  22. Kim, J., Son, J.W., Lee, J.A., Oh, Y.S. & Shinn, S.H. Methylglyoxal induces apoptosis mediated by reactive oxygen species in bovine retinal pericytes. J. Korean Med. Sci. 19, 95–100 (2004).

    Article  CAS  Google Scholar 

  23. Akhand, A.A. et al. Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells. Free Radic. Biol. Med. 31, 20–30 (2001).

    Article  CAS  Google Scholar 

  24. Huang, W.J. et al. Ras activation modulates methylglyoxal-induced mesangial cell apoptosis through superoxide production. Ren. Fail. 29, 911–921 (2007).

    Article  CAS  Google Scholar 

  25. Du, J. et al. Superoxide-mediated early oxidation and activation of ASK1 are important for initiating methylglyoxal-induced apoptosis process. Free Radic. Biol. Med. 31, 469–478 (2001).

    Article  CAS  Google Scholar 

  26. Amicarelli, F. et al. Scavenging system efficiency is crucial for cell resistance to ROS-mediated methylglyoxal injury. Free Radic. Biol. Med. 35, 856–871 (2003).

    Article  CAS  Google Scholar 

  27. Berlanga, J. et al. Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin. Sci. (Lond) 109, 83–95 (2005).

    Article  CAS  Google Scholar 

  28. Huang da, W. et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35, W169–175 (2007).

    Article  Google Scholar 

  29. Ogawa, S. et al. Methylglyoxal is a predictor in type 2 diabetic patients of intima-media thickening and elevation of blood pressure. Hypertension 56, 471–476 (2010).

    Article  CAS  Google Scholar 

  30. Beisswenger, P.J., Howell, S.K., Nelson, R.G., Mauer, M. & Szwergold, B.S. alpha-oxoaldehyde metabolism and diabetic complications. Biochem. Soc. Trans. 31, 1358–1363 (2003).

    Article  CAS  Google Scholar 

  31. Abe, M. et al. Methylglyoxal augments intracellular oxidative stress in human aortic endothelial cells. Free Radic. Res. 44, 101–107 (2010).

    Article  Google Scholar 

  32. Nakayama, M., Sakai, A., Numata, M. & Hosoya, T. Hyper-vascular change and formation of advanced glycation endproducts in the peritoneum caused by methylglyoxal and the effect of an anti-oxidant, sodium sulfite. Am. J. Nephrol. 23, 390–394 (2003).

    Article  CAS  Google Scholar 

  33. Wang, X.X., Desai, K., Chang, T.J. & Wu, L.Y. Vascular methylglyoxal metabolism and the development of hypertension. J. Hypertens. 23, 1565–1573 (2005).

    Article  CAS  Google Scholar 

  34. Chen, Y., Zhao, S. & Xiang, R. RTN3 and RTN4: Candidate modulators in vascular cell apoptosis and atherosclerosis. J. Cell. Biochem. 111, 797–800.

  35. Millette, E., Rauch, B.H., Kenagy, R.D., Daum, G. & Clowes, A.W. Platelet-derived growth factor-BB transactivates the fibroblast growth factor receptor to induce proliferation in human smooth muscle cells. Trends Cardiovasc. Med. 16, 25–28 (2006).

    Article  CAS  Google Scholar 

  36. Wagsater, D., Zhu, C., Bjorck, H.M. & Eriksson, P. Effects of PDGF-C and PDGF-D on monocyte migration and MMP-2 and MMP-9 expression. Atherosclerosis 202, 415–423 (2009).

    Article  Google Scholar 

  37. Gigante, B., Bennet, A.M., Leander, K., Vikstrom, M. & de Faire, U. The interaction between coagulation factor 2 receptor and interleukin 6 haplotypes increases the risk of myocardial infarction in men. PLoS One 5 (2010).

  38. Rosenberger, C. et al. Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J. Am. Soc. Nephrol. 13, 1721–1732 (2002).

    Article  CAS  Google Scholar 

  39. Turanek, J. et al. Liposomal formulation of alpha-tocopheryl maleamide: in vitro and in vivo toxicological profile and anticancer effect against spontaneous breast carcinomas in mice. Toxicol. Appl. Pharmacol. 237, 249–257 (2009).

    Article  CAS  Google Scholar 

  40. Forsythe, J.A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604–4613 (1996).

    CAS  Google Scholar 

  41. Schutyser, E., Struyf, S. & Van Damme, J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 14, 409–426 (2003).

    Article  CAS  Google Scholar 

  42. Terao, Y. et al. Macrophage inflammatory protein-3alpha plays a key role in the inflammatory cascade in rat focal cerebral ischemia. Neurosci. Res. 64, 75–82 (2009).

    Article  CAS  Google Scholar 

  43. Jeong, S.I. et al. Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol. Cell. Toxicol. 6, 373–380 (2010).

    Article  Google Scholar 

  44. Lee, S.H. et al. Identification of atherosclerosis related gene expression profiles by treatment of benzo(a) pyrene in human umbilical vein endothelial cells. Mol. Cell. Toxicol. 5, 113–119 (2009).

    Google Scholar 

  45. Lee, N.J., Lee, S.E., Lee, S.H., Ryu, D.S. & Park, Y.S. Acrolein induces adaptive response through upregulate of HO-1 via activation of Nrf2 in RAW 264.7 macrophage. Mol. Cell. Toxicol. 5, 230–236 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Seek Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.E., Yang, H., Jeong, S.I. et al. Methylglyoxal-mediated alteration of gene expression in human endothelial cells. BioChip J 5, 220–228 (2011). https://doi.org/10.1007/s13206-011-5305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-011-5305-y

Keywords

Navigation