Skip to main content

Advertisement

Log in

Global transcriptome analysis of the Escherichia coli O157 response to Houttuynia Cordata Thunb

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Houttuynia Cordata Thunb (HCT; Saururaceae), known as ‘Eosungcho’ in Korea, has been traditionally used for antibiotic treatment and has proved its effect through clinical demonstrations. In spite of it s being used quite frequently in traditional prescriptions because of its superior antibiotic effect, HCT’s molecular mechanisms on its antibiotic effect have not been understood. Hence, this is the first study about HCT’s antibiotic mechanisms at the molecular level. HCT was extracted to acquire the fractions, then inoculated to confirm its antibiotic effect toward the bacteria Escherichia coli O157:H7 (E. coli O157:H7; ATCC 43894) through the disc diffusion method. The antibacterial efficacy of HCT was measured by diameter of cleared zone. Thereafter, we isolated the RNA of affected cells and analyzed it’s expressions through the microarray. To confirm the accuracy of the acquired data, RT-PCR was carried out. Results from this study indicate that E. coli O157:H7 exposures to HCT fractions, a number of genes that have been related to the synthesis of bacterial cell wall are downregulated, while some of the cell wall synthesis inhibitory genes are upregulated. Both results indicate that HCT fractions inhibit cell wall synthesis as like as β-lactam antibiotics. Furthermore, a few genes that have a critical role to DNA replication are downregulated. These genes, including folA, are closely related to the folate biosynthesis. Remarkable abnormal regulations that show antibiotic resistance activity of the E. coli O157: H7 are found, and are seem to be closely linked to the multidrug efflux pumps, especially upregulation of marRAB operon. The results of this study improve our understanding of the mode of action of HCT on E. coli O157:H7 and may show the usefulness of HCT fractions in the antibacterial treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, B. Literature review on the pharmaceutical effects and utilization of Houttyunia cordata Thunb. J. East Asian Soc. Dietary Life 12, 1–6 (2002).

    Google Scholar 

  2. Lee, J.S. et al. Suppressive effects of Houttuynia cordata Thunb (Saururaceae) extract on Th2 immune response. J. Ethnopharmacol. 117, 34–40 (2008).

    Article  Google Scholar 

  3. Lau, K.M. et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol. 118, 79–85 (2008).

    Article  Google Scholar 

  4. Sherman, P.M., Ossa, J.C. & Wine, E. Bacterial infections: new and emerging enteric pathogens. Curr. Opin. Gastroenterol. 26, 1–4 (2010).

    Article  Google Scholar 

  5. La Ragione, R.M., Best, A., Woodward, M.J. & Wales, A.D. Escherichia coli O157:H7 colonization in small domestic ruminants. FEMS Microbiol. Rev. 33, 394–410 (2009).

    Article  CAS  Google Scholar 

  6. Chase-Topping, M., Gally, D., Low, C., Matthews, L. & Woolhouse, M. Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat. Rev. Microbiol. 6, 904–912 (2008).

    Article  CAS  Google Scholar 

  7. Tarr, P.I., Gordon, C.A. & Chandler, W.L. Shiga-toxinproducing Escherichia coli and haemolytic uraemic syndrome. Lancet 365, 1073–1086 (2005).

    CAS  Google Scholar 

  8. Holtz, L.R., Neill, M.A. & Tarr, P.I. Acute bloody diarrhea: a medical emergency for patients of all ages. Gastroenterology 136, 1887–1898 (2009).

    Article  Google Scholar 

  9. Jenke, C. et al. Phylogenetic analysis of enterohemorrhagic Escherichia coli O157, Germany, 1987–2008. Emerg. Infect. Dis. 16, 610–616 (2010).

    CAS  Google Scholar 

  10. U.S.FDA. Immediate Release. P06-197 (12 Dec 2006).

  11. Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775–781 (2000).

    Article  CAS  Google Scholar 

  12. Blumberg, P.M. & Strominger, J.L. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol. Rev. 38, 291–335 (1974).

    CAS  Google Scholar 

  13. Lovering, A.L., Gretes, M. & Strynadka, N.C. Structural details of the glycosyltransferase step of peptidoglycan assembly. Curr. Opin. Struct. Biol. 18, 534–543 (2008).

    Article  CAS  Google Scholar 

  14. Onoe, H., Matsumoto, A., Hashimoto, K., Yamano, Y. & Morishima, I. Peptidoglycan recognition protein (PGRP) from eri-silkworm, Samia cynthia ricini; protein purification and induction of the gene expression. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 147, 512–519 (2007).

    Article  CAS  Google Scholar 

  15. Stenbak, C.R. et al. Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J. Immunol. 173, 7339–7348 (2004).

    CAS  Google Scholar 

  16. Mor, A., Delfour, A. & Nicolas, P. Identification of a D-alanine-containing polypeptide precursor for the peptide opioid, dermorphin. J. Biol. Chem. 266, 6264–6270 (1991).

    CAS  Google Scholar 

  17. Barrett, D. et al. Analysis of glycan polymers produced by peptidoglycan glycosyltransferases. J. Biol. Chem. 282, 31964–31971 (2007).

    Article  CAS  Google Scholar 

  18. Wiedemann, B., Pfeifle, D., Wiegand, I. & Janas, E. beta-Lactamase induction and cell wall recycling in gram-negative bacteria. Drug Resist Updat. 1, 223–226 (1998).

    Article  CAS  Google Scholar 

  19. Hirano, T., Minamino, T. & Macnab, R.M. The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase. J. Mol. Biol. 312, 359–369 (2001).

    Article  CAS  Google Scholar 

  20. Allen, M.J., White, G.F. & Morby, A.P. The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology 152, 989–1000 (2006).

    Article  CAS  Google Scholar 

  21. Feher, K., Pristovsek, P., Szilagyi, L., Ljevakovic, D. & Tomasic, J. Modified glycopeptides related to cell wall peptidoglycan: conformational studies by NMR and molecular modelling. Bioorg. Med. Chem. 11, 3133–3140 (2003).

    Article  CAS  Google Scholar 

  22. Reynolds, P.E., Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 8, 943–950 (1989).

    Article  CAS  Google Scholar 

  23. Korat, B., Mottl, H. & Keck, W. Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition. Mol. Microbiol. 5, 675–684 (1991).

    Article  CAS  Google Scholar 

  24. Kishida, H. et al. Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics. Biochemistry 45, 783–792 (2006).

    Article  CAS  Google Scholar 

  25. Lessard, I.A. & Walsh, C.T. VanX, a bacterial Dalanyl-D-alanine dipeptidase: resistance, immunity, or survival function? Proc. Natl. Acad. Sci. USA 96, 11028–11032 (1999).

    Article  CAS  Google Scholar 

  26. Scholte, A.A., Eubanks, L.M., Poulter, C.D. & Vederas, J.C. Synthesis and biological activity of isopentenyl diphosphate analogues. Bioorg. Med. Chem. 12, 763–770 (2004).

    Article  CAS  Google Scholar 

  27. Shaw, P.J. & Hills, G.J. The three-dimensional structure of the cell wall glycoprotein of Chlorogonium elongatum. J. Cell Sci. 68, 271–284 (1984).

    CAS  Google Scholar 

  28. Besong, G.E. et al. A de novo designed inhibitor of D-Ala-D-Ala ligase from E. coli. Angew. Chem. Int. Ed. Engl. 44, 6403–6406 (2005).

    Article  CAS  Google Scholar 

  29. Frick, D.N., Townsend, B.D. & Bessman, M.J. A novel GDP-mannose mannosyl hydrolase shares homology with the MutT family of enzymes. J. Biol. Chem. 270, 24086–24091 (1995).

    Article  CAS  Google Scholar 

  30. Fohrer, J., Hennig, M. & Carlomagno, T. Influence of the 2′-hydroxyl group conformation on the stability of A-form helices in RNA. J. Mol. Biol. 356, 280–287 (2006).

    Article  CAS  Google Scholar 

  31. Sousa, M.M., Krokan, H.E. & Slupphaug, G. DNA-uracil and human pathology. Mol. Aspects. Med. 28, 276–306 (2007).

    Article  CAS  Google Scholar 

  32. Pytel, D., Slupianek, A., Ksiazek, D., Skorski, T. & Blasiak, J. [Uracil-DNA glycosylases]. Postepy. Biochem. 54, 362–370 (2008).

    CAS  Google Scholar 

  33. Fenech, M. Folate, DNA damage and the aging brain. Mech. Ageing. Dev. (2010).

  34. Bailey, S.W. & Ayling, J.E. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc. Natl. Acad. Sci. USA 106, 15424–15429 (2009).

    Article  Google Scholar 

  35. Wegkamp, A., van Oorschot, W., de Vos, W.M. & Smid, E.J. Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Appl. Environ. Microbiol. 73, 2673–2681 (2007).

    Article  CAS  Google Scholar 

  36. Pages, J.M., Masi, M. & Barbe, J. Inhibitors of efflux pumps in Gram-negative bacteria. Trends. Mol. Med. 11, 382–389 (2005).

    Article  CAS  Google Scholar 

  37. Bavro, V.N. et al. Assembly and channel opening in a bacterial drug efflux machine. Mol. Cell 30, 114–121 (2008).

    Article  CAS  Google Scholar 

  38. Morita, Y., Sobel, M.L. & Poole, K. Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibioticinducible PA5471 gene product. J. Bacteriol. 188, 1847–1855 (2006).

    Article  CAS  Google Scholar 

  39. Lewis, K., Hooper, D.C. & Ouellette, M. Multidrug resistance pumps provide broad defense — MDR pumps expel a broad array of otherwise toxic molecules, including many antibiotics. ASM News 63, 605–610 (1997).

    Google Scholar 

  40. Asako, H., Nakajima, H., Kobayashi, K., Kobayashi, M. & Aono, R. Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. Appl. Environ. Microbiol. 63, 1428–1433 (1997).

    CAS  Google Scholar 

  41. Fralick, J.A. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J. Bacteriol. 178, 5803–5805 (1996).

    CAS  Google Scholar 

  42. Martin, R.G. & Rosner, J.L. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc. Natl. Acad. Sci. USA 92, 5456–5460 (1995).

    Article  CAS  Google Scholar 

  43. Martin, R.G., Jair, K.W., Wolf, R.E., Jr. & Rosner, J.L. Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. J. Bacteriol. 178, 2216–2223 (1996).

    CAS  Google Scholar 

  44. McMurry, L.M., George, A.M. & Levy, S.B. Active efflux of chloramphenicol in susceptible Escherichia coli strains and in multiple-antibiotic-resistant (Mar) mutants. Antimicrob. Agents. Chemother. 38, 542–546 (1994).

    CAS  Google Scholar 

  45. Okusu, H., Ma, D. & Nikaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178, 306–308 (1996).

    CAS  Google Scholar 

  46. White, D.G., Goldman, J.D., Demple, B. & Levy, S.B. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 179, 6122–6126 (1997).

    CAS  Google Scholar 

  47. Cohen, S.P., McMurry, L.M. & Levy, S.B. marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J. Bacteriol. 170, 5416–5422 (1988).

    CAS  Google Scholar 

  48. Cohen, S.P., Hachler, H. & Levy, S.B. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J. Bacteriol. 175, 1484–1492 (1993).

    CAS  Google Scholar 

  49. Rosner, J.L., Chai, T.J. & Foulds, J. Regulation of ompF porin expression by salicylate in Escherichia coli. J. Bacteriol. 173, 5631–5638 (1991).

    CAS  Google Scholar 

  50. Viveiros, M. et al. Antibiotic stress, genetic response and altered permeability of E. coli. PLoS One 2, e365 (2007).

    Article  CAS  Google Scholar 

  51. Vecchione, J.J., Alexander, B., Jr. & Sello, J.K. Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Antimicrob. Agents. Chemother. 53, 4673–4677 (2009).

    Article  CAS  Google Scholar 

  52. Mizuno, T., Kato, M., Jo, Y.L. & Mizushima, S. Interaction of OmpR, a positive regulator, with the osmoregulated ompC and ompF genes of Escherichia coli. Studies with wild-type and mutant OmpR proteins. J. Biol. Chem. 263, 1008–1012 (1988).

    CAS  Google Scholar 

  53. Han, X. et al. Escherichia coli genes that reduce the lethal effects of stress. BMC Microbiol. 10, 35 (2010).

    Article  CAS  Google Scholar 

  54. Itou, J., Eguchi, Y. & Utsumi, R. Molecular mechanism of transcriptional cascade initiated by the EvgS/EvgA system in Escherichia coli K-12. Biosci. Biotechnol. Biochem. 73, 870–878 (2009).

    Article  CAS  Google Scholar 

  55. Kato, A. et al. Transcription of emrKY is regulated by the EvgA-EvgS two-component system in Escherichia coli K-12. Biosci. Biotechnol. Biochem. 64, 1203–1209 (2000).

    Article  CAS  Google Scholar 

  56. Nishino, K. & Yamaguchi, A. Overexpression of the response regulator evgA of the two-component signal transduction system modulates multidrug resistance conferred by multidrug resistance transporters. J. Bacteriol. 183, 1455–1458 (2001).

    Article  CAS  Google Scholar 

  57. Nishino, K., Senda, Y. & Yamaguchi, A. The AraCfamily regulator GadX enhances multidrug resistance in Escherichia coli by activating expression of mdtEF multidrug efflux genes. J. Infect. Chemother. 14, 23–29 (2008).

    Article  CAS  Google Scholar 

  58. Higashi, K. et al. Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. J. Bacteriol. 190, 872–878 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung-Ki Jung or Hyeung-Jin Jang.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K.S., Park, Y.J., Jung, HJ. et al. Global transcriptome analysis of the Escherichia coli O157 response to Houttuynia Cordata Thunb. BioChip J 4, 237–246 (2010). https://doi.org/10.1007/s13206-010-4312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-010-4312-8

Keywords

Navigation