Skip to main content
Log in

On-chip assay of matrix metalloproteinase-3 activity using fluorescence-conjugated gelatin arrays

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

We developed a new high-throughput approach to measure matrix metalloproteinase (MMP)-3 activity using Cy3-conjugated gelatin arrays. We fabricated Cy3-conjugated gelatin arrays by immobilizing Cy3-conjugated gelatin onto well-type amine arrays. The ratio of Cy3-NHS to gelatin was optimized to improve the efficiency of the arrays. MMP-3 activity was determined by the decrease of fluorescence intensity due to MMP-3-mediated degradation of Cy3-conjugated gelatin. The gelatinolytic activity of MMP-3 increased in the presence of Brij-35, a non-ionic detergent, in a dose-dependent manner. Cy3-conjugated gelatin arrays were successfully applied for the analyses of MMP-3 activity, which showed a dose-dependent degradation of the Cy3-conjugated substrate. This chip-based activity assay using a Cy3-conjugated gelatin array is simple, rapid, cost-effective, and has a potential for activity-based proteomic researches and screening of MMP-3 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkedal-Hansen, H. Proteolytic remodeling of extracellular matrix. Curr. Opin. Cell Biol. 7, 728–735 (1995).

    Article  CAS  Google Scholar 

  2. Murphy, G.J., Murphy, G. & Reynolds, J.J. The origin of matrix metalloproteinases and their familial relationships. FEBS. Lett. 89, 4–7 (1991).

    Article  Google Scholar 

  3. Nagase, H. & Woessner, J.F. Jr. Matrix metalloproteinase. J. Biol. Chem. 274, 21491–21494 (1999).

    Article  CAS  Google Scholar 

  4. Skiles, J.W., Gonnella, N.C. & Jeng, A.Y. The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr. Med. Chem. 8, 425–474 (2001).

    CAS  Google Scholar 

  5. Bertini, I. et al. Snapshots of the reaction mechanism of matrix metalloproteinases. Angew. Chem. Int. Ed. Engl. 45, 7952–7955 (2006).

    Article  CAS  Google Scholar 

  6. Alcaraz, L.A. Matrix metalloproteinase-inhibitor interaction: the solution structure of the catalytic domain of human matrix metalloproteinase-3 with different inhibitors. J. Biol. Inorg. Chem. 12, 1197–1206 (2007).

    Article  CAS  Google Scholar 

  7. Si-Tayeb, K. et al. Matraix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis. Am. J. Pathol. 169, 1390–1401 (2006).

    Article  CAS  Google Scholar 

  8. Vihinen, P. & Kähäri, V.M. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer 99, 157–166 (2002).

    Article  CAS  Google Scholar 

  9. Hiller, O., Lichte, A., Oberpichler, A., Kocourek, A. & Tschesche, H. Matrix metalloproteinases collagenase-2, macrophage elastase, collagenase-3, and membrane type 1-matrix metalloproteinase impair clotting by degradation of fibrinogen and factor XII. J. Biol. Chem. 275, 33008–33013 (2000).

    Article  CAS  Google Scholar 

  10. Visse, R. & Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827–839 (2003).

    Article  CAS  Google Scholar 

  11. Jung, S.H. et al. Rapid analysis of matrix metalloproteinase-3 activity by gelatin arrays using a spectral surface plasmon resonance biosensor. Analyst 135, 1050–1057 (2010).

    Article  CAS  Google Scholar 

  12. Dodge, G.R. & Jimenez, S.A. Glucosamine sulfate modulates the levels of aggrecan and matrix metalloproteinase-3 synthesized by cultured human osteoarthritis articular chondrocytes. OsteoArthritis and Cartilage 11, 424–432 (2003).

    Article  CAS  Google Scholar 

  13. Kirkegaard, T., Hansen, A., Bruun, E. & Brynskov, J. Expression and localization of matrix metalloproteinases and their natural inhibitor in fistulae of patients with Crohn’s disease. Gut. 53, 701–709 (2004).

    Article  CAS  Google Scholar 

  14. Vessillier, S., Adams, G. & Chernajovsky, Y. Latent cytokines: development of novel cleavage sites and kinetic analysis of their differential sensitivity to MMP-1 and MMP-3. Protein Eng. Des. Sel. 17, 829–835 (2005).

    Article  Google Scholar 

  15. Lauer-Fields, J.L. et al. High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate. Bioorg. Med. Chem. 17, 990–1005 (2009).

    Article  CAS  Google Scholar 

  16. Yang, J. et al. Detection of MMP activity in living cells by a genetically encoded surface-displayed FRET sensor. Biochim. Biophys. Acta 1773, 400–407 (2007).

    Article  CAS  Google Scholar 

  17. Ouyang, M., Sun, J., Chien, S. & Wang, Y. Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proc. Natl. Acad. Sci. USA 105, 14353–14358 (2008).

    Article  Google Scholar 

  18. Kim, Y.P. et al. Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal. Chem. 80, 4634–4641 (2008).

    Article  CAS  Google Scholar 

  19. Zhu, H. & Snyder, M. Protein chip technology. Curr. Opin. Chem. Biol. 7, 55–63 (2003).

    Article  CAS  Google Scholar 

  20. Yuk, J.S. & Ha, K.S. Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays. Exp. Mol. Med. 37, 1–10 (2005).

    CAS  Google Scholar 

  21. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  Google Scholar 

  22. Stears, R.L., Martinsky, T. & Schena, M. Trends in microarray analysis. Nat. Med. 9, 140–145 (2003).

    Article  CAS  Google Scholar 

  23. Yang, J. et al. Detection of MMP activity in living cells by a genetically encoded surface-displayed FRET sensor. Biochim. Biophys. Acta 1773, 400–407 (2007).

    Article  CAS  Google Scholar 

  24. Cheng, D., Shen, Q., Nan, F., Qian, Z. & Ye, Q.Z. Purification and characterization of catalytic domains of gelatinase A with or without fibronectin insert for high-throughput inhibitor screening. Protein Expr. Purif. 27, 63–72 (2003).

    Article  CAS  Google Scholar 

  25. Eastoe, J.E. The amino acid composition of mammalian collagen and gelatin. Biochemical Journal 61, 589–600 (1955).

    CAS  Google Scholar 

  26. Miller, J.C. et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3, 56–63 (2003).

    Article  CAS  Google Scholar 

  27. Wustneck, R., Wetzel, R., Buder, E. & Hermel, H. The modification of the triple helical structure of gelatin in aqueous solution. I. The influence of anionic surfactants, pH-value, and temperature. Colloid Polym. Sci. 266, 1061–1067 (1988).

    Article  Google Scholar 

  28. Ye, G.Z., Johnson, L.L., Hupe, D.J. & Baragi, V. Purification and characterization of the human stromelysin catalytic domain expressed in Escherichia coli. Biochemistry 31, 11231–11235 (1992).

    Article  CAS  Google Scholar 

  29. Koo, M.H. et al. Refolding of the catalytic and hinge domains of human MT1-mMP expressed in Escherichia coli and its characterization. Mol. Cells 13, 118–124 (2002).

    CAS  Google Scholar 

  30. Jung, J.W. et al. Label-free and quantitative analysis of C-reactive protein in human sera by tagged-internal standard assay on antibody arrays. Biosens. Bioelectron. 24, 1469–1473 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Soo Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, DH., Jung, SH., Lee, ST. et al. On-chip assay of matrix metalloproteinase-3 activity using fluorescence-conjugated gelatin arrays. BioChip J 4, 210–216 (2010). https://doi.org/10.1007/s13206-010-4308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-010-4308-4

Keywords

Navigation