Skip to main content
Log in

A review on strategies for crop improvement against drought stress through molecular insights

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The demand for food goods is rising along with the world population growth, which is directly related to the yield of agricultural crops around the world. However, a number of environmental factors, including floods, salinity, moisture, and drought, have a detrimental effect on agricultural production around the world. Among all of these stresses, drought stress (DS) poses a constant threat to agricultural crops and is a significant impediment to global agricultural productivity. Its potency and severity are expected to increase in the future years. A variety of techniques have been used to generate drought-resistant plants in order to get around this restriction. Different crop plants exhibit specific traits that contribute to drought resistance (DR), such as early flowering, drought escape (DE), and leaf traits. We are highlighting numerous methods that can be used to overcome the effects of DS in this review. Agronomic methods, transgenic methods, the use of sufficient fertilizers, and molecular methods such as clustered regularly interspaced short palindromic repeats (CRISPRs)-associated nuclease 9 (Cas9), virus-induced gene silencing (VIGS), quantitative trait loci (QTL) mapping, microRNA (miRNA) technology, and OMICS-based approaches make up the majority of these techniques. CRISPR technology has rapidly become an increasingly popular choice among researchers exploring natural tolerance to abiotic stresses although, only a few plants have been produced so far using this technique. In order to address the difficulties imposed by DS, new plants utilizing the CRISPR technology must be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LSP (2017) The, “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep 36(7):1009–1025

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman M, Al-Sadi AM, Pour Aboughadareh A, Burritt DJ, Tran LSP (2018) Genome editing using CRISPR/Cas9–targeted mutagenesis: an opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol Biochem 131:31–36

    Article  CAS  PubMed  Google Scholar 

  • Agarwal A, Yadava P, Kumar K, Singh I (2018) Insights into maize genome editing via CRISPR/Cas9. Physiol Mol Biol Plants 24:175–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applica-tions: a review. J Adv Res 6:105–121

    Article  CAS  PubMed  Google Scholar 

  • Ahn H, Jung I, Shin SJ, Park J, Rhee S, Kim J-K, Jung W, Kwon HB, Kim S (2017) Transcriptional network analysis reveals drought resistance mechanisms of AP2/ERF transgenic rice. Front Plant Sci 8:1044

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Hassan M, Chaura J, Donattorres P, Boscaiu M (2017) Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 9(2):plx009

    Article  PubMed  PubMed Central  Google Scholar 

  • Amede T, Schubert S (2003) Mechanisms of drought resistance in grain legumes i: osmotic adjustment. Ethiop J Sci 26:37–46

    Google Scholar 

  • Anjum SA, Ashraf U, Zohaib A, Tanveer M, Naeem M, Ali I, Tabassum T, Nazir U (2017) Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture 104:267–276

    Article  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57

    Article  CAS  PubMed  Google Scholar 

  • Ayala F, Fedrigo GV, Burachik M, Miranda PV (2019) Compositional equivalence of event IND-ØØ412-7 to non-transgenic wheat. Transgenic Res 28(2):165–176

    Article  CAS  PubMed  Google Scholar 

  • Bai C, Wang P, Fan Q, Fu WD, Wang L, Zhang ZN, Song Z, Zhang GL, Wu JH (2017) Analysis of the role of the drought-induced gene DRI15 and salinity-induced gene SI1 in Alternanthera philoxeroides plasticity using a virus-based gene silencing tool. Front Plant Sci 8:1579

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergau J (2019) Verdeca introduces HB4® drought tolerant soybeans to growers at Argentina’s Expoagro [Online]. https://www.businesswire.com/news/home/20190326005300/en/Verdeca-Introduces-HB4%C2%AE-Drought-TolerantSoybeans-Growers. Arcadia Biosciences. Accessed 26 Apr 2019

  • Bertolino LT, Caine RS, Gray JE (2019) Impact of stomatal density and morphology on water-use efficiency in a changing world. Front Plant Sci 10:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi C, Ma Y, Wang XF, Zhang DP (2017) Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis. Plant Mol Biol 95(4–5):425–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielach A, Hrtyan M, Tognetti VB (2017) Plants under stress: involvement of Auxin and Cytokinin. Int J Mol Sci 18:1427

    Article  PubMed  PubMed Central  Google Scholar 

  • Blum A (2015) Stress, strain, signaling, and adaptation–not just a matter of definition. J Exp Bot 67(3):562–565

    Article  PubMed  Google Scholar 

  • Blum A, Tuberosa R (2018) Dehydration survival of crop plants and its measurement. J Exp Bot 69(5):975–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouremani N, Cherif-Silini H, Silini A, Bouket AC, Luptakova L, Alenezi FN, Belbahri L (2023) Plant growth-promoting rhizobacteria (PGPR): a rampart against the adverse effects of drought stress. Water 15(3):418

    Article  CAS  Google Scholar 

  • Briñez B, Morini J, Cardoso K, Rosa JS, Bassi D, Gonçalves GR, Almeida C, Fausto J, Paulino DC, Blair MW, Chioratto AF, Carbonell SAM, Valdisser PAMR, Vianello RP, Benchimol-Reis LL (2017) Mapping QTLs for drought tolerance in a SEA 5 and 277 common bean cross with SSRs and SNP markers. Genet Mol Biol 823:813–823

    Article  Google Scholar 

  • Busta L, Jetter R (2018) Moving beyond the ubiquitous: the diversity and biosynthesis of specialty compounds in plant cuticular waxes. Phytochem Rev 17(6):1275–1304

    Article  CAS  Google Scholar 

  • Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10:e0136064

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty A, Aditya M, Dey N, Banik N (2016) Antioxidant signaling and redox regulation in drought-and salinity-stressed plants. In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran L-SP (eds) Drought stress tolerance in plants, vol 1. Springer, Berlin, Germany, pp 465–498

    Chapter  Google Scholar 

  • Chen J, Liu Y, Pan T, Liu Y, Sun F, Ge Q (2018) Population exposure to droughts in China under the 1.5 °C global warming target. Earth Syst Dynam 9:1097–1106. https://doi.org/10.5194/esd-9-1097-2018

    Article  Google Scholar 

  • Chen H, Feng H, Zhang X, Zhang C, Wang T, Dong J (2019) An Arabidopsis E3 ligase HUB2 increases histone H2B monoubiquitination and enhances drought tolerance in transgenic cotton. Plant Biotechnol J 17(3):556–568

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhang N, Zhou G, Hussain S, Ahmed S, Tian H, Wang S (2021) Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC Plant Biol 21(1):137. https://doi.org/10.1186/s12870-021-02907-9. (PMID: 33726681; PMCID: PMC7967987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury JA, Karim MA, Khaliq QA, Ahmed AU, Khan MSA (2016) Effect of drought stress on gas exchange characteristics of four soybean genotypes. Bangladesh J Agr Res 41:195–205

    Article  Google Scholar 

  • Conti L (2019) The A-B-A of floral transition: the to do list for perfect escape. Mol Plant 12(3):289–291

    Article  CAS  PubMed  Google Scholar 

  • Cortés AJ, Castillejo MÁ, Yockteng R (2023) ‘Omics’ approaches for crop improvement. Agronomy 13(5):1401

    Article  Google Scholar 

  • Cui XY, Gao Y, Guo J, Yu TF, Zheng WJ, Liu YW, Chen J, Xu ZS, Ma YZ (2019) BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1. Plant Physiol 180:605–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Rushton P, Rohila J (2017) Metabolomic profiling of soybeans (Glycinemax L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Dheer P, Rautela I, Sharma V, Dhiman M, Sharma A, Sharma N, Sharma MD (2020) Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Gene 753:144795

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L, Zhang XL (2017) MicroRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J 91:977

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65(14):3783–3798

    Article  PubMed  Google Scholar 

  • Dong T, Park Y, Hwang I (2015) Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays Biochem 58:29–48

    Article  PubMed  Google Scholar 

  • Egilla JN, Davies FT, Boutton TW (2005) Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43:135–40

    Article  CAS  Google Scholar 

  • Espinosa-Ruiz A, Martinez C, de Lucas M, Fàbregas N, Bosch N, Cano-Delgado AI, Prat S (2017) TOPLESS mediates brassinosteroid control of shoot boundaries and root meristem development in Arabidopsis thaliana. Development 144(9):1619–1628

    CAS  PubMed  Google Scholar 

  • Farooq M, Hussain M, Siddique KHM (2014) drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33:331–349

    Article  CAS  Google Scholar 

  • Fernández V, Guzmán-Delgado P, Graça J, Santos S, Gil L (2018) Cuticle structure in relation to chemical composition: re-assessing the prevailing model. Front Plant Sci 7:427

    Google Scholar 

  • Ferreira CMH, Soares HMVM, Soares EV (2019) Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects. Sci Total Environ 682:779–799

    Article  CAS  PubMed  Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a newparadigm for increasing food production. Front Plant Sci 6:978

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Ma H, Chen S, Gu T, Gong J (2017) Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J Exp Bot 69:579–588

    Article  PubMed Central  Google Scholar 

  • Gonzalez FG, Capella M, Ribichich KF, Curin F, Giacomelli JI, Ayala F, Watson G, Otegui ME, Chan RL (2019) Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. J Exp Bot 70(5):1669–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goretti D, Martignago D, Landini M, Brambilla V, Gomez-Ariza J, Gnesutta N, Galbiati F, Collani S, Takagi H, Terauchi R, Mantovani R, Fornara F (2017) Transcriptional and post-transcriptional mechanisms limit heading date 1 (Hd1) function to adapt rice to high latitudes. PloS Genet 13(1):e1006530

    Article  PubMed  PubMed Central  Google Scholar 

  • Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa AS, António C, Trindade H (2017) Cowpea (Vigna unguiculata L. Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front Plant Sci 8:00586

    Article  Google Scholar 

  • Guan JC, Koch KE (2015) A time and a place for sugar in your ears. Nat Biotechnol 33:827

    Article  CAS  PubMed  Google Scholar 

  • Guler NS, Pehlivan N (2016) Exogenous low dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system. Acta Biol Hung 67:169–183

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Singh M, Laxmi A (2015) Multiple interactions between glucose and brassinosteroid signal transduction pathways in arabidopsis are uncovered by whole-genome transcriptional profiling. Plant Physiol 168(3):1091–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Habibzadeh Y (2014) Response of mung bean plants to arbuscular mycorrhiza and phosphorus in drought stress. Int J Innov Appl Stud 6:2028–9324

    Google Scholar 

  • Harris-Shultz KR, Hayes CM, Knoll JE (2019) Mapping QTLs and identification of genes associated with drought resistance in sorghum. In: Zhao Z-Y, Dahlberg J (eds) Sorghum: methods and protocols. Springer, New York, NY, pp 11–40

    Chapter  Google Scholar 

  • He L, Yang X, Wang L, Zhu L, Zhou T, Deng J, Zhang X (2013) Molecular cloning and functional characterize abiotic stress tolerance in transgenic plants. Biochem Biophys Res Commun 435:209–215

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Zhang R, Huang G, Li Y, Melaku G, Zhang S, Chen H, Zhao Y, Zhang J, Zhang Y, Hu F (2018) Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system. Crop J 6:475–481

    Article  Google Scholar 

  • Hussain M, Farooq S, Hasan W, Ul-allah S, Tanveer M (2018) Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag J 201:152–166

    Article  Google Scholar 

  • Hwang K, Susila H, Nasim Z, Jung JY, Ahn JH (2019) Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Mol Plant 12(4):489–505

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HA, Abdellatif YMR (2016) Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress. Ann Agric Sci 61:267–274

    Article  Google Scholar 

  • Ito Y, Nishizawayokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82

    Article  CAS  PubMed  Google Scholar 

  • Jacobs TB, Lafayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechol 15:1–10

    CAS  Google Scholar 

  • Jamla M, Khare T, Joshi S, Patil S, Penna S, Kumar V (2021) Omics approaches for understanding heavy metal responses and tolerance in plants. Curr Plant Biol 27:100213

    Article  CAS  Google Scholar 

  • Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  • Jung SE, Bang SW, Kim SH, Seo JS, Yoon HB, Kim YS, Kim JK (2021) Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. Int J Mol Sci 22:7656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapusi E, Corcuera-Gómez M, Melnik S, Stoger E (2017) Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front Plant Sci 8:540

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan N, Bano A, Babar A (2019) Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L. PLoS ONE 13:e0213040

    Article  Google Scholar 

  • Khater MA, Dawood MG, Sadak MS, Shalaby MAF, El-Awadi EA, El-Din KG (2018) Enhancement the performance of cowpea plants grown under drought conditions via trehalose application. Middle East J Agric Res 7:782–800

    Google Scholar 

  • Khazaei H, Sullivan DMO, Sillanpää MJ, Stoddard FL (2014) Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.). Theor Appl Genet 127:2371–2385

    Article  PubMed  Google Scholar 

  • Kirungu JN, Magwanga RO, Lu P, Cai X, Zhou Z, Wang X, Peng R, Wang K, Liu F (2019) Functional characterization of Gh_A08G1120 (GH3 5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genet 20(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  • Koevoets IT, Venema JH, Elzenga JTM, Testerink C (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7:1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162

    Article  CAS  PubMed  Google Scholar 

  • Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:1–22

    Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Leggett M, Diaz-Zorita M, Koivunen M, Bowman R, Pesek R, Stevenson C, Leister T (2017) Soybean response to inoculation with in the United States and Argentina. Agron J 109:1031

    Article  Google Scholar 

  • Li L, Yu D, Zhao F, Pang C, Song M, Wei H, Fan S, Yu S (2015) Genome-wide analysis of the calcium-dependent protein kinase gene family in Gossypium raimondii. J Integr Agric 14:29–41

    Article  CAS  Google Scholar 

  • Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, Hou BK (2017) The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J 89(1):85–103

    Article  CAS  PubMed  Google Scholar 

  • Li J, Guo X, Zhang M, Wang X, Zhao Y, Yin Z, Zhang Z, Wang Y, Xiong H, Zhang H, Todorovska E (2018) OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis. Plant Sci 270:131–139

    Article  CAS  PubMed  Google Scholar 

  • Li L, Du Y, He C, Dietrich CR, Li J, Ma X, Wang R, Liu Q, Liu S, Wang G, Schnable PS, Zheng J (2019a) Maize glossy6 is involved in cuticular wax deposition and drought tolerance. J Exp Bot 70(12):3089–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Liu C, Zhao R, Wang L, Chen L, Yu W, Zhang S, Sheng J, Shen L (2019b) CRISPR/Cas9-mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol 19(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Li X, Jiang M (2021) CRISPR/Cas9-mediated mutagenesis of WRKY3 and WRKY4 function decreases salt and Me-JA stress tolerance in Arabidopsis thaliana. Mol Biol Rep 48:5821–5832

    Article  CAS  PubMed  Google Scholar 

  • Lim WC, Lim S, Baek W, Lee CS (2015) The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response. Physiol Plant 154(4):526–542

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Song Q, Li D, Yang X, Li D (2017) Multifunctional roles of plant dehydrins in response to environmental stresses. Front Plant Sci 8:2015–2018

    Google Scholar 

  • Liu Y, Chen S, Wei P, Guo S, Wu J (2022) A briefly overview of the research progress for the abscisic acid analogues. Front Chem 10:967404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma D, Sun D, Wang C, Qin H, Ding H, Li Y, Guo T (2016) Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul 35:1–10

    Article  CAS  Google Scholar 

  • Majumdar R, Barchi B, Turlapati SA, Gagne M (2016) Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci 7:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Manmathan H, Shaner D, Snelling J, Tisserat N, Lapitan N (2013) Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance. J Exp Bot 64:1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao H, Li S, Chen B, Jian C, Mei F, Zhang Y, Li F, Chen N, Li T, Du L, Ding L, Wang W, Cheng X, Wang X, Kang X (2022) Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Mol Plant 15:276–292

    Article  CAS  PubMed  Google Scholar 

  • Martignago D, Rico-Medina A, Blasco-Escámez D, Fontanet-Manzaneque JB, Caño-Delgado AI (2020) Drought resistance by engineering plant tissue-specific responses. Front Plant Sci 10:1676. https://doi.org/10.3389/fpls.2019.01676

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins S, Montiel-Jorda A, Cayrel A, Huguet S, Roux CP, Ljung K, Vert G (2017) Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun 8(1):309

    Article  PubMed  PubMed Central  Google Scholar 

  • McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T (2017) Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol 211(4):1209–1220

    Article  Google Scholar 

  • Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotraa S (2014) Abscisic acid and abiotic stress tolerance-different tiers of regulation. J Plant Physiol 171:486–496

    Article  CAS  PubMed  Google Scholar 

  • Mei Y, Wang Y, Chen H, Sun ZS, Ju XD (2016) Recent progress in CRISPR/Cas9 technology. J Genet Genomics 43:63–75

    Article  CAS  PubMed  Google Scholar 

  • Merilo E, Pirko J, Kristiina L, Omid M, Hanna H, Hannes K, Mikael B (2015) Abscisic acid transport and homeostasis in the context of stomatal regulation. Mol Plant 8:1321–1333

    Article  CAS  PubMed  Google Scholar 

  • Mohamed IH, Hanan HL (2017) Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants 23:545–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, Yuan W, Xu W, Zhang Q (2022) Mechanisms of abscisic acid-mediated drought stress responses in plants. Int J Mol Sci 23:1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukeshimana G, Butare L, Cregan PB, Blair MW, Kelly JD (2014) Quantitative trait loci associated with drought tolerance in common bean. Crop Sci 54:923–938

    Article  Google Scholar 

  • Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Singh AK, Tyagi A, Salgotra RK, Dar AA, Bhat R (2018) CRISPR/Cas approach: a new way of looking at plant-abiotic interactions. J Plant Physiol 224–225:156–162

    Article  PubMed  Google Scholar 

  • Nadeem M, Li J, Wang M, Shah L, Lu S, Wang X, Ma C (2018) Unraveling field crops sensitivity to heat stress: mechanisms, approaches, and future prospects. Agronomy 8:128

    Article  CAS  Google Scholar 

  • Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C (2019) Grain legumes and fear of salt stress: focus on mechanisms and management strategies. Int J Mol Sci 20:799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayasu M, Akiyama R, Lee HJ, Osakabe K, Osakabe Y, Watanabe B, Sugimoto Y, Umemoto N, Saito K, Muranaka T, Mizutani M (2018) Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol Biochem 131:70–77

    Article  CAS  PubMed  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Nemali KS, Bonin C, Dohleman FG, Stephens M, Reeves WR, Nelson DE, Castiglioni P, Whistel JE, Sammons B, Silady RA, Anstrom D, Sharp RE, Patharkar OR, Clay D, Coffin M, Nemeth MA, Leibman ME, Luethy M, Lawson M (2015) Physiological responses related to increased grain yield under drought in the first biotechnology-derived drought-tolerant maize. Plant Cell Environ 38(9):1866–1880

    Article  PubMed  Google Scholar 

  • Niu X, Song L, Xiao Y, Ge W, Job D (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with Foxtail Millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    Article  PubMed  PubMed Central  Google Scholar 

  • Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Matthew JP, Chen X, Gao Y, Haque E, Basu SS, Lagrimini LM (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33:862

    Article  CAS  PubMed  Google Scholar 

  • Nunez-Munoz L, Vargas-Hernández B, Hinojosa-Moya J, Ruiz-Medrano R, Xoconostle-Cázares B (2021) Plant drought tolerance provided through genome editing of the trehalase gene. Plant Signal Behav 16:1877005

    Article  PubMed  PubMed Central  Google Scholar 

  • Osman HS (2015) Enhancing antioxidant yield relationship of pea plant under drought at different growth stages by exogenously applied glycine betaine and proline. Ann Agric Sci 60:389–402

    Article  Google Scholar 

  • Paixao JFR, Gillet FX, Ribeiro TP, Bournaud C, Lourenço-Tessutti IT, Noriega DD, de Melo BP, de Almeida-Engler J, Grossi-de-Sa MF (2019) Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a histone acetyl transferase. Sci Rep 9(1):8080

    Article  Google Scholar 

  • Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie JM, Blatt MR (2019) Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363(6434):1456–1459

    Article  CAS  PubMed  Google Scholar 

  • Park J, Lee Y, Martinoia E, Geisler M (2017) Plant hormone transporters: what we know and what we would like to know. BMC Biol 15:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JR, Kim EG, Jang YH, Jan R, Farooq M, Ubaidillah M, Kim KM (2022) Applications of CRISPR/Cas9 as new strategies for short breeding to drought gene in rice. Front Plant Sci 13:850441

    Article  PubMed  PubMed Central  Google Scholar 

  • Patwari P, Salewski V, Gutbrod K, Kreszies T, Dresen-Scholz B, Peisker H, Steiner U, Meyer AJ, Schreiber L, Dörmann P (2019) Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J 98:727–744

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Gonzalez-Uriarte A, Griffiths CA, Hassani-Park K (2018) The role of trehalose 6-phosphate in crop yield and resilience. Plant Physiol 177(1):12–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. Vitro Cell Dev Biol Plant 51:1–8

    Article  CAS  Google Scholar 

  • Prasad VBR, Govindaraj M, Djanaguiraman M, Djalovic I, Shailani A, Rawat N, Singla-Pareek SL, Pareek A, Prasad PVV (2021) Drought and high temperature stress in sorghum: physiological, genetic, and molecular insights and breeding approaches. Int J Mol Sci 22:9826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prince SJ, Joshi T, Mutava RN, Syed N, Vitor MDSJ, Patil G, Song L, Wang JJ, Lin L, Chen W, Shannon JG, Valliyodan B, Xu D, Nguyen HT (2015) Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting. Plant Sci 240:65–78

    Article  CAS  PubMed  Google Scholar 

  • Ramírez Gonzales L, Shi L, Bergonzi SB, Oortwijn M, Franco-Zorrilla JM, Solano-Tavira R, Visser RGF, Abelenda JA, Bachem CWB (2021) Potato CYCLING DOF FACTOR 1 and its lncRNA counterpart StFLORE link tuber development and drought response. Plant J 105:855–869

    Article  PubMed  PubMed Central  Google Scholar 

  • Rautela I, Uniyal P, Thapliyal P, Chauhan N, Bhushan Sinha V, Dev Sharma M (2021) An extensive review to facilitate understanding of CRISPR technology as a gene editing possibility for enhanced therapeutic applications. Gene 785:145615. https://doi.org/10.1016/j.gene.2021.145615. (Epub 2021 Mar 26 PMID: 33775851)

    Article  CAS  PubMed  Google Scholar 

  • Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L (2016) ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot 67(22):6309–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32:93–98

    Article  CAS  PubMed  Google Scholar 

  • Sahitya UL, Krishna MSR, Prasad GS, Kasim DP, Deepthi RS (2018) Seed antioxidants interplay with drought stress tolerance indices in chilli (Capsicum annuum L.) seedlings. Biomed Res Int 2018:1605096

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahni S, Prasad B, Liu Q, Grbic V, Sharpe A, Singh S, Krishna P (2016) Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep 6:28298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikia J, Sarma R, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:3560. https://doi.org/10.1038/s41598-018-21921-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Leon S, Gil Humanes J, Ozuna CV, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2014) Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc 9(7):1549–1562

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, Groot S, Soole K, Langridge P (2017) Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Front Plant Sci 8:1950–1950

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen C, Zhang Y, Li Q, Liu S, He F, An Y, Xia X (2021) PdGNC confers drought tolerance by mediating stomatal closure resulting from NO and H2O2 production via the direct regulation of PdHXK1 expression in Populus. New Phytol 230(5):1868–1882

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Shinde S, Villamor JG, Lin W, Sharma S, Verslues PE (2016) Proline co-ordination with fatty acid synthesis and redox metabolism of chloroplast and mitochondria. Plant Physiol 172:1074–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shohat H, Cheriker H, Kilambi HV, Illouz Eliaz N, Blum S, Amsellem Z, Weiss D (2021) Inhibition of gibberellin accumulation by water deficiency promotes fast and long-term ‘drought avoidance’responses in tomato. New Phytol 232(5):1985–1998

    Article  CAS  PubMed  Google Scholar 

  • Siriwardana CL, Gnesutta N, Kumimoto RW, Jones DS, Myers ZA, Mantovani R, Holt BF (2016) NUCLEAR FACTOR Y, subunit A (NF-YA) proteins positively regulate flowering and act through FLOWERING LOCUS T. PloS Genet 12(12):e1006496

    Article  PubMed  PubMed Central  Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21(2):197–203

    Article  CAS  PubMed  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solanki JK, Sarangi SK (2015) Effect of drought stress on proline accumulation in peanut genotypes. Int J Adv Res 2:301–309

    Google Scholar 

  • Sussmilch FC, McAdam SAM (2017) Surviving a dry future: abscisic acid (ABA)-mediated plant mechanisms for conserving water under low humidity. Plants (basel) 6:54

    PubMed  Google Scholar 

  • Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Ymaguchi-Shinozaki K, Shinozaki K (2018) A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556(7700):235–238

    Article  CAS  PubMed  Google Scholar 

  • Tasaki K, Terada H, Masuta C, Yamagishi M (2016) Virus-induced gene silencing (VIGS) in Lilium leichtlinii using the Cucumber mosaic virus vector. Plant Biotechnol 33(5):373–381

    Article  CAS  Google Scholar 

  • Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S (2018) NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J 16(2):354–366

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren L, Guo S, Gong G, Liu F, Xu Y (2017) Efficient CRISPR/Cas9-based gene knockout in water-melon. Plant Cell Rep 36:399–406

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Chu C (2018) Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci 23(11):1016–1028

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25:33103–33118

    Article  CAS  Google Scholar 

  • Ulzen J, Abaidoo RC, Mensah NE, Masso C, AbdelGadir AH (2016) Bradyrhizobium inoculants enhance grain yields of soybean and cowpea in Northern Ghana. Front Plant Sci 29(7):1770. https://doi.org/10.3389/fpls.2016.01770. (PMID: 27965683; PMCID: PMC5126734)

    Article  Google Scholar 

  • Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339(6120):704–707

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2015) First stress-tolerant soybean gets go-ahead in Argentina. Nat Biotechnol 33:682

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Guo Y, Liu Y, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11:e0154027

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Chen L, Zhao R, Yang M, Sheng J, Shen L (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65(39):8674–8682

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ren Y, Li J, Wang Z, Xin Z, Lin T (2019) Knock-down the expression of TaH2B-7D using virus-induced gene silencing reduces wheat drought tolerance. Biol Res 52(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cao Y, Liang X, Zhuang J, Wang X, Qin F, Jiang C (2022) A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat Commun 13:2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Hu C, Tan Q, Lu L, Shi K, Zheng Y, Sun X (2015) Drought stress tolerance mediated by zinc-induced antioxidative defense and osmotic adjustment in cotton (Gossypium hirsutum). Acta Physiol Plant 37:167

    Article  Google Scholar 

  • Xie F, Wang Q, Sun R, Zhang B (2015) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Li Y, Cheng Z, Xia G, Wang M (2016) A wheat histone variant gene TaH2A.7 enhances drought tolerance and promotes stomatal closure in Arabidopsis. Plant Cell Rep 35:1853–1862

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Fu X, Liu R, Guo L, Ran L, Li C, Tian Q, Jiao B, Wang B, Luo K (2017) PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiol 37(12):1713–1726

    Article  CAS  PubMed  Google Scholar 

  • Xue D, Zhang X, Lu X, Chen G, Chen ZH (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Jia H, Wang F, Wang C, Liu S, Guo X (2015) Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana. Front Physiol 6:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H, Zhang D, Li X, Li H, Zhang D, Lan H, Wood AJ, Wang L (2016) Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Mol Breed 36:1–13

    Article  Google Scholar 

  • Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y, Xiang CB (2015) Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14:72–84

    Article  PubMed  Google Scholar 

  • Zargar SM, Mir RA, Ebinezer LB, Masi A, Hami A, Manzoor M, Rakwal R (2022) Physiological and multi-omics approaches for explaining drought stress tolerance and supporting sustainable production of rice. Front Plant Sci 12:803603

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, He J (2015) Sugar-induced plant growth is dependent on brassinosteroids. Plant Signal Behav 10(12):e1082700

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Shen G, Kuppu S, Gaxiola R, Payton P (2011) Creating drought- and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav 6:861–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li WX, Mao L, Xu Y, Li X, Xie C (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6:23890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Wu D, Kong F, Lin K, Zhang H, Li G (2017) The arabidopsis thaliana nuclear factor y transcription factors. Front Plant Sci 7:2045–2045

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng JY, Oluoch G, Khan R, Wang XX, Cai XY, Zhou ZL, Wang CY, Wang YH, Li XY, Liu F, Wang KB (2016) Mapping QTLs for drought tolerance in an F2:3 population from an inter-specific cross between Gossypium tomento-sum and Gossypium hirsutum. Genet Mol Res 15:15038477

    Article  Google Scholar 

  • Zheng M, Lin J, Liu X, Chu W, Li J, Gao Y, An K, Song W, Xin M, Yao Y, Peng H, Ni Z, Sun Q, Hu Z (2021) Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiol 186:1951–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zha M, Huang J, Li L, Imran M, Zhang C (2017) StMYB44 negatively regulates phosphate transport by suppressing expression of PHOS-PHATE1 in potato. J Exp Bot 68:1265–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Feng Z, Zhai F, Ye S, Zhou Y, Ge Z, Tilak P, Eirich J, Finkemeier I, Fu L, Li Z, Yang J, Shen W, Yuan X, Xie Y (2021) Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling. Mol Plant 15:651–670. https://doi.org/10.1016/j.molp.2021.11.006

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Song N, Sun S, Yang W, Zhao H, Song W, Lai J (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genomics 43:25–36

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AS and PD designed and collected the data; IR and PT contributed in abstract, introduction, and conclusion; PT and ABB contributed in designing table and figure; IR and MDS finally proof read the manuscript.

Corresponding author

Correspondence to Manish Dev Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Dheer, P., Rautela, I. et al. A review on strategies for crop improvement against drought stress through molecular insights. 3 Biotech 14, 173 (2024). https://doi.org/10.1007/s13205-024-04020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-024-04020-8

Keywords

Navigation