Skip to main content
Log in

Chloroplast transformation in new cultivars of tomato through particle bombardment

  • Protocols and Methods
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

A protocol has been established for genetic transformation of the chloroplasts in two new cultivars of tomato (Solanum lycopersicum L.) grown in India and Australia: Pusa Ruby and Yellow Currant. Tomato cv. Green Pineapple was also used as a control that has previously been used for establishing chloroplast transformation by other researchers. Selected tomato cultivars were finalized from ten other tested cultivars (Green Pineapple excluded) due to their high regeneration potential and better response to chloroplast transformation. This protocol was set up using a chloroplast transformation vector (pRB94) for tomatoes that is made up of a synthetic gene operon. The vector has a chimeric aadA selectable marker gene that is controlled by the rRNA operon promoter (Prrn). This makes the plant or chloroplasts resistant to spectinomycin and streptomycin. After plasmid-coated particle bombardment, leaf explants were cultured in 50 mg/L selection media. Positive explant selection from among all the dead-appearing (yellow to brown) explants was found to be the major hurdle in the study. Even though this study was able to find plastid transformants in heteroplasmic conditions, it also found important parameters and changes that could speed up the process of chloroplast transformation in tomatoes, resulting in homoplasmic plastid-transformed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The entire dataset is available as supplemental material to this publication.

Abbreviations

Prrn:

rRNA Pomoter

IAA:

Indole 3-acetic Acid

BAP:

N6-benzylamino Purine

LCY:

Lycopene Cyclase

BHY:

β-Carotene Hydroxylase

BKT:

β-Carotene Ketolase

PRM:

Plant Regeneration Media

CTAB:

Cetyltrimethylammonium Bromide

GP:

Green Pineapple

YC:

Yellow Currant

PR:

Pusa Ruby

References

  • Avila EM, Day A (2014) Stable plastid transformation of Petunia. In: Maliga P (ed) Chloroplast biotechnology. Springer, Berlin, pp 277–293

    Chapter  Google Scholar 

  • Bouvier F, Camara B (2007) The role of plastids in ripening fruits. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Dordrecht, pp 419–432

    Chapter  Google Scholar 

  • Cheng L, Li H-P, Qu B, Huang T, Tu J-X, Fu T-D, Liao Y-C (2010) Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep 29(4):371–381

    Article  CAS  PubMed  Google Scholar 

  • Dubald M, Tissot G, Pelissier B (2014) Plastid transformation in soybean. In: Maliga P (ed) Chloroplast biotechnology. Springer, Berlin, pp 345–354

    Chapter  Google Scholar 

  • Farooq N, Nawaz MA, Mukhtar Z, Ali I, Hundleby P, Ahmad N (2019) Investigating the in vitro regeneration potential of commercial cultivars of Brassica. Plants (Basel, Switzerland) 8(12):558. https://doi.org/10.3390/plants8120558

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Maoka T, Osawa A, Hattan J-I, Kanamoto H, Shindo K, Otomatsu T, Misawa N (2014) Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids. Transgenic Res 23(2):303–315

    Article  CAS  PubMed  Google Scholar 

  • Joyard J, Teyssier E, Miege C, Berny-Seigneurin D, Maréchal E, Block MA, Dorne A-J, Rolland N, Ajlani G, Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118(3):715–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136(1):2843–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56(2):203–216. https://doi.org/10.1007/s11103-004-2907-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci 110(8):E623–E632

    Article  PubMed  PubMed Central  Google Scholar 

  • Maliga P, Tungsuchat-Huang T (2014) Plastid transformation in Nicotiana tabacum and Nicotiana sylvestris by biolistic DNA delivery to leaves. In: Maliga P (ed) Chloroplast biotechnology: methods and protocols. Humana Press, New Jersey, pp 147–163

    Chapter  Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/technology 13(4):362–365

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K-I (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15(5):637–646

    Article  CAS  PubMed  Google Scholar 

  • Ruf S, Bock R (2014) Plastid transformation in tomato. In: Maliga P (ed) Chloroplast biotechnology. Springer, Berlin, pp 265–276

    Chapter  Google Scholar 

  • Ruf S, Bock R (2021) Plastid transformation in tomato: a vegetable crop and model species. Methods Mol Biol 2317:217–228. https://doi.org/10.1007/978-1-0716-1472-3_11

    Article  CAS  PubMed  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19(9):870

    Article  CAS  PubMed  Google Scholar 

  • Ruf S, Kroop X, Bock R (2021) Chloroplast transformation in Arabidopsis. Curr Protoc 1(4):e103. https://doi.org/10.1002/cpz1.103

    Article  CAS  PubMed  Google Scholar 

  • Sikdar S, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18(1–2):20–24

    Article  CAS  Google Scholar 

  • Singh A, Verma S, Bansal K (2010) Plastid transformation in eggplant (Solanum melongena L.). Transgenic Res 19(1):113–119

    Article  CAS  PubMed  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 90(3):913–917. https://doi.org/10.1073/pnas.90.3.913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanwar N, Rookes JE, Cahill DM, Lenka SK (2023a) Carotenoid pathway engineering in tobacco chloroplast using a synthetic operon. Mol Biotechnol 65:1923–1934

    Article  CAS  PubMed  Google Scholar 

  • Tanwar N, Arya SS, Rookes JE, Cahill DM, Lenka SK, Bansal KC (2023b) Prospects of chloroplast metabolic engineering for developing nutrient-dense food crops. Crit Rev Biotechnol 43(7):1001–1018

    Article  CAS  PubMed  Google Scholar 

  • Tseng M-J, Yang M-T, Chu W-R, Liu C-W (2014) Plastid transformation in cabbage (Brassica oleracea L. var. capitata L.) by the biolistic process. Methods Mol Biol 1132:355–366

    Article  CAS  PubMed  Google Scholar 

  • Verma D, Samson NP, Koya V, Daniell H (2008) A protocol for expression of foreign genes in chloroplasts. Nat Protoc 3(4):739–758. https://doi.org/10.1038/nprot.2007.522

    Article  CAS  PubMed  Google Scholar 

  • Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H (2004) Metabolic engineering of the chloroplast genome using the Escherichia coli ubi C gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol 136(4):4048–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wei Z, Xing S (2018) Stable plastid transformation of rice, a monocot cereal crop. Biochem Biophys Res Commun 503(4):2376–2379

    Article  CAS  PubMed  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49(2):276–288

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AMI, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6(9):897–913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Ralph Bock (Max Planck Institute for molecular plant physiology) for providing pRB94 chloroplast specific vector and Deakin University Australia for partially supporting this research and providing postgraduate research scholarship to NT.

Funding

Deakin University Australia is acknowledged for partially supporting this research and providing postgraduate research scholarship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kailash C. Bansal or Sangram K. Lenka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanwar, N., Mahto, B.K., Rookes, J.E. et al. Chloroplast transformation in new cultivars of tomato through particle bombardment. 3 Biotech 14, 120 (2024). https://doi.org/10.1007/s13205-024-03954-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-024-03954-3

Keywords

Navigation