Skip to main content
Log in

Transcriptomics reveals key genes responsible for functional diversity in pectoralis major muscles of native black Kadaknath and broiler chicken

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

RNA sequencing-based expression profiles from pectoralis major muscles of black meat (Kadaknath) and white meat (broiler) chicken were compared to identify differentially expressed genes. A total of 156 genes with log2 fold change ≥  ± 2.0 showed higher expression in Kadaknath and 68 genes were expressed at a lower level in comparison to broiler. Significantly enriched biological functions of up-regulated genes in Kadaknath were skeletal muscle cell differentiation, regulation of response to reactive oxygen, positive regulation of fat cell differentiation and melanosome. Significant ontology terms up-regulated in broiler included DNA replication origin binding, G-protein coupled receptor signaling pathway and chemokine activity. Highly inter-connected differentially expressed genes in Kadaknath (ATFs, C/EPDs) were observed to be important regulators of cellular adaptive functions, while in broiler, the hub genes were involved in cell cycle progression and DNA replication. The study is an attempt to get an insight into the transcript diversity of pectoralis major muscles of Kadaknath and broiler chicken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data supporting this study was generated by ICAR -NBAGR. The RNAseq data generated in the study has been deposited in the NCBI (Short Read Archive Bioproject PRJNA832030).Declarations.

References

  • Arora G, Mishra SK, Nautiyal B, Pratap SO, Gupta A, Beura CK, Singh DP (2011) Genetics of hyperpigmentation associated with the fibromelanosis gene (Fm) and analysis of growth and meat quality traits in crosses of native Indian Kadaknath chickens and non-indigenous breeds. Br Poult Sci 52(6):675–685

    Article  CAS  PubMed  Google Scholar 

  • BAHS (2019) basic animal husbandry statistics. department of animal husbandry dairying and fisheries, Government of India, Ministry of Agriculture and Farmers’ Welfare, New Delhi, India. 1–132.

  • Cao W, Zhou X, McCallum NC, Hu Z, Zhe Ni Q, Kapoor U, Heil CM, Cay KS, Zand T, Mantanona AJ, Jayaraman A, Dhinojwala A, Deheyn DD, Shawkey MD, Burkart MD, Rinehart JD, Gianneschi NC (2021) Unraveling the structure and function of melanin through synthesis. J Am Chem Soc 143:17891–17909. https://doi.org/10.1021/jacs.0c12322

    Article  CAS  Google Scholar 

  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. https://doi.org/10.1186/1752-0509-8-S4-S11

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou HC, Bhalla K, Demerdesh OE, Klingbeil O, Hanington K, Aganezov S, Andrews P, Alsudani H, Chang K, Vakoc CR, Schatz MC, McCombie WR, Stillman B (2021) The human origin recognition complex is essential for pre-RC assembly, mitosis, and maintenance of nuclear structure. Elife 10:e61797. https://doi.org/10.7554/eLife.61797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogburn LA, Nares T, Chuming C, Hongzhan H, Cathy H, Wu WC, Xiaofei W, Harold BW (2018) Transcriptional profiling of liver during the critical embryo-to-hatchling transition period in the chicken (Gallus gallus). BMC Genom 19(1):1–37

    Article  Google Scholar 

  • Chiang Hsin-I, Luc R, Berghman Huaijun Z (2009) Inhibition of NF-kB 1 (NF-kBp50) by RNA interference in chicken macrophage HD11 cell line challenged with Salmonella enteritidis. Genet Mol Biol 32(3):507–515

    Article  Google Scholar 

  • D’Mello SAN, Finlay GJ, Baguley BC, Askarian-Amiri ME (2016) Signaling pathways in melanogenesis. Int J Mol Sci 17(7):1144

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebert SM, Dierdorff JM, Meyerholz DK, Bullard SA, Al-Zougbi A, DeLau AD, Tomcheck KC, Skopec ZP, Marcotte GR, Bodine SC, Adams CM (2019) An investigation of p53 in skeletal muscle aging. J Appl Physiol 127(4):1075–1084. https://doi.org/10.1152/japplphysiol.00363.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Verdejo R, Vanwynsberghe AM, Essaghir A, Demoulin JB, Hai T, Deldicque L, Francaux M (2017) Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J 31(2):840–851. https://doi.org/10.1096/fj.201600987R

    Article  CAS  PubMed  Google Scholar 

  • Haunshi S, Prince LLL (2021) Kadaknath: a popular native chicken breed of India with unique black colour characteristics. Worlds Poult Sci J 77:427–440. https://doi.org/10.1080/00439339.2021.1897918

    Article  Google Scholar 

  • Hsin-I C, Luc R, Berghman Huaijun Z (2009) Inhibition of NF-kB 1 (NF-kBp50) by RNA interference in chicken macrophage HD11 cell line challenged with Salmonella enteritidis. Genet Mol Biol 32(3):507–515

    Article  Google Scholar 

  • Hu G, Wang Z, Zhang R, Sun W, Chen X (2021) The role of Apelin/Apelin receptor in energy metabolism and water homeostasis: a comprehensive narrative review. Front Physiol 12:632886. https://doi.org/10.3389/fphys.2021.632886

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl Acids Res 37(1):1–13

    Article  PubMed  Google Scholar 

  • Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P (2020) The reactome pathway knowledgebase. Nucl Acids Res 8:48. https://doi.org/10.1093/nar/gkz1031

    Article  CAS  Google Scholar 

  • Jaturasitha S, Srikanchai T, Kreuzer M, Wicke M (2008) Different in carcass and meat characteristics between chicken indigenous to Northern Thailand (Black-boned and Thai native) and improved extensive breeds (Bresse and Rhode Island Red). Poultry Sci 87:160–169

    Article  CAS  Google Scholar 

  • Khan AG (2008) Indigenous breeds, crossbreds and synthetic hybrids with modified genetic and economic profiles for rural family and small scale poultry farming in India. Worlds Poult Sci J 64(3):405–415. https://doi.org/10.1017/S0043933908000135

    Article  Google Scholar 

  • Kim HJ, Kim HJ, Jang A (2019) Nutritional and antioxidative properties of black goat meat cuts. Asian-Australas J Anim Sci 32(9):1423–1429 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong HS, Oh JD, Lee JH, Jo KJ, Sang BD, Choi CH, Kim SD, Lee SJ, Yeon SH, Jeon GJ, Lee HK (2006) Genetic variation and relationships of Korean native chickens and foreign breeds using 15 microsatellite markers. Asian-Aust J Anim Sci 19:1546–1550

    Article  CAS  Google Scholar 

  • Lambertz C, Wuthijaree K, Gauly M (2018) Performance, behavior, and health of male broilers and laying hens of 2 dual-purpose chicken genotypes. Poult Sci 97(10):3564–3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li DH, Wang XL, Fu YW, Zhang CX, Cao YF, Wang J, Zhang Y, Li Y, Chen Y, Li Z, Li W, Jiang R, Sun G, Tian Y, Li G, Kang X (2019) Transcriptome analysis of the breast muscle of Xichuan black-bone chickens under tyrosine supplementation revealed the mechanism of tyrosine-induced melanin deposition. Front Genet 10:457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Marafon BB, Pinto AP, Ropelle ER, de Moura LP, Cintra DE, Pauli JR, da Silva ASR (2022) Muscle endoplasmic reticulum stress in exercise. Acta Physiol (Oxf) 235(1):e13799. https://doi.org/10.1111/apha.13799

    Article  CAS  PubMed  Google Scholar 

  • Mati K, Verma AK (1983) Indigenous germplasm for rural and tribal upliftment. Indian Poultry Rev 16:19–23

    Google Scholar 

  • Meir O, Dvash E, Werman A, Rubinstein M (2010) C/EBP-β regulates endoplasmic reticulum stress-triggered cell death in mouse and human models. PLoS ONE 5(3):e9516

    Article  PubMed  PubMed Central  Google Scholar 

  • Memme JM, Oliveira AN, Hood DA (2022) p53 regulates skeletal muscle mitophagy and mitochondrial quality control following denervation-induced muscle disuse. J Biol Chem 298(2):101540

    Article  CAS  PubMed  Google Scholar 

  • Mohan J, Sastry KVH, Moudgal RP, Tyagi JS (2008) Performance profile of Kadaknath desi hens under normal rearing system. Int J Poult Sci 43:379–381

    Google Scholar 

  • Otecko NO, Ogali I, Nganga SI, Mauki DH, Ogada S, Moraa GK, Lichoti J, Agwanda B, Peng MS, Ommeh SC, Zhang YP (2019) Phenotypic and morphometric differentiation of indigenous chickens from Kenya and other tropical countries augments perspectives for genetic resource improvement and conservation. Poult Sci 98(7):2747–2755. https://doi.org/10.3382/ps/pez097

    Article  PubMed  PubMed Central  Google Scholar 

  • Ou HL, Schumacher B (2018) DNA damage responses and p53 in the aging process. Blood 131:488–495. https://doi.org/10.1182/blood-2017-07-746396

    Article  CAS  PubMed  Google Scholar 

  • Papadakis MA, Workman CT (2015) Oxidative stress response pathways: fission yeast as archetype. Crit Rev Microbiol 41(4):520–535. https://doi.org/10.3109/1040841X.2013.870968

    Article  CAS  PubMed  Google Scholar 

  • Passeron T, Coelho SG, Miyamura Y, Takahashi K, Hearing VJ (2007) Immunohistochemis-try and in situ hybridization in the study of human skin melanocytes. Exp Dermatol 16(3):162–170. https://doi.org/10.1111/j.1600-0625.2006.00538.x

    Article  CAS  PubMed  Google Scholar 

  • Pellattiero E, Tasoniero G, Cullere M, Gleeson E, Baldan G, Contiero B, Dalle Zotte A (2020) Are meat quality traits and sensory attributes in favor of slow-growing chickens? Animals 10(6):960

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao GV, Thomas PC (1984) The breed characteristics of Kadaknath breed of indigenous (Desi) chicken. Avian Res 68:55–57

    Google Scholar 

  • Ren L, Liu A, Wang Q, Wang H, Dong D, Liu L (2021) Transcriptome analysis of embryonic muscle development in Chengkou Mountain Chicken. BMC Genom 22(1):1–12

    Article  Google Scholar 

  • Rengaraj D, Lee BR, Choi JW, Lee SI, Seo HW, Kim TH, Choi HJ, Song G, Han JY (2012) Gene pathways and cell cycle-related genes in cultured avian primordial germ cells. Poult Sci 91(12):3167–3177. https://doi.org/10.3382/ps.2012-02279

    Article  CAS  PubMed  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  • Sachdev AK, Kumar S, Verma SS, Gopal R, Rajendran A (1996) Protein profile of edible muscles in Kadaknath and broiler birds. Proceedings XX World’s Poultry Congress, 2–5 September, New Delhi, India. 4:434

  • Santos MN, Rothschild D, Widowski TM, Barbut S, Kiarie EG, Mandell I, Guerin MT, Edwards AM, Torrey S (2021) In pursuit of a better broiler: carcass traits and muscle myopathies in conventional and slower-growing strains of broiler chickens. Poult Sci 100(9):101309. https://doi.org/10.1016/j.psj.2021.101309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sclafani RA, Holzen TM (2007) Cell cycle regulation of DNA replication. Annu Rev Genet 41:237–280. https://doi.org/10.1146/annurev.genet.41.110306.130308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehrawat R, Sharma R, Ahlawat S, Sharma V, Thakur MS, Kaur M, Tantia MS (2021) First report on better functional property of Black chicken meat from India. Indian J Animal Res 55(6):723–733. https://doi.org/10.18805/IJAR.B-4014

    Article  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Sehrawat R, Ahlawat S, Sharma V, Parmar A, Thakur MS, Mishra AK, Tantia MS (2022) An attempt to valorize the only black meat chicken breed of India by delineating superior functional attributes of its meat. Sci Rep 12:3555. https://doi.org/10.1038/s41598-022-07575-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh DP, Singh HP (1998) Black flesh chicken - Kadaknath. Poult Punch 4:45–51

    Google Scholar 

  • Tian YG, Xie MY, Wang WY, Wu HJ, Fu ZH, Lin L (2007) Determination of carnosine in black-bone silky fowl (Gallus gallus domesticus Brisson) and common chicken by HPLC. Eur Food Res Technol 226:311–314

    Article  CAS  Google Scholar 

  • Tsukada J, Yoshida Y, Kominato Y, Auron PE (2011) The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine 54(1):6–19. https://doi.org/10.1016/j.cyto.2010.12.019

    Article  CAS  PubMed  Google Scholar 

  • Tu YG, Xie MY, Sun YZ, Tian YG (2009) Structural characterization of melanin from black-bone silky fowl (Gallus gallus domesticus Brisson). Pigm Cell Melan Res 22(1):134–136. https://doi.org/10.1111/j.1755-148X.2008.00529.x

    Article  CAS  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucl Acids Res 40(15):e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Y, Sihua J, Chendong M, Zhicheng W, Qi F, Runshen J (2017) RNA-Seq reveals seven promising candidate genes affecting the proportion of thick egg albumen in layer-type chickens. Sci Rep 7(1):1–9

    Article  Google Scholar 

  • Wojcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M, Chen Y (2010) The potential protective effects of taurine on coronary heart disease. Atherosclerosis 208(1):19

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Ruas JL, Estall JL, Rasbach KA, Choi JH, Ye L, Bostrom P, Tyra HM, Crawford RW, Campbell KP, Rutkowski DT, Kaufman RJ, Spiegelman BM (2011) The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex. Cell Metab 13:160–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Lin Z, Chen G, Luo Q, Nie Q, Zhang X, Luo W (2021) Characterization of chicken skin yellowness and exploration of genes involved in skin yellowness deposition in chicken. Front Physiol 12:585089. https://doi.org/10.3389/fphys.2021.585089

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue Z, Demple B (2022) Knockout and inhibition of Ape1: roles of Ape1 in base excision DNA repair and modulation of gene expression. Antioxidants (basel, Switzerland) 11(9):1817. https://doi.org/10.3390/antiox11091817

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhou Y, Wu C, Wan Y, Fang C, Li J, Fang W, Yi R, Zhu G, Li J, Wang Y (2018) Characterization of the Apelin/Elabela receptors (APLNR) in Chickens, Turtles, and Zebrafish: identification of a novel Apelin-specific receptor in Teleosts. Front Endocrinol 9:756. https://doi.org/10.3389/fendo.2018.00756

    Article  Google Scholar 

Download references

Acknowledgements

This funds for this study were provided by ICAR- CABin Scheme, New Delhi. We express our gratitude to Director, ICAR- National Bureau of Animal Genetic Resources (NBAGR), Karnal and Indian Council of Agricultural Research (ICAR), New Delhi for providing essential facilities.

Author information

Authors and Affiliations

Authors

Contributions

RA, SA: conceptualization and supervision. RA, SA, AK, MK: resources and data curation. RA, PC, RKV, SBL, DCM, MSF and SS: formal analyses; RA, RS: writing—review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Reena Arora.

Ethics declarations

Conflict of interest

We declare that all authors agree with the content of the submitted manuscript and that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 188 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, R., Sharma, R., Ahlawat, S. et al. Transcriptomics reveals key genes responsible for functional diversity in pectoralis major muscles of native black Kadaknath and broiler chicken. 3 Biotech 13, 253 (2023). https://doi.org/10.1007/s13205-023-03682-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03682-0

Keywords

Navigation