Skip to main content
Log in

Genome mining of Pseudomonas spp. hints towards the production of under-pitched secondary metabolites

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The recent advances in omics and computational analysis have enabled the capacity to identify the exclusive strain-specific metabolites and novel biosynthetic gene clusters. This study analyzed eight strains of P. aurantiaca including GS1, GS3, GS4, GS6, GS7, FS2, ARS38, PBSt2, one strain of P. chlororaphis RP4, one strain of P. aeruginosa (At1RP4), and one strain of P. fluorescens (RS1) for the production of rhamnolipids, quorum-sensing signals, and osmolytes. Seven rhamnolipid derivatives were variably detected in fluorescent pseudomonads. These rhamnolipids included Rha-C10-C8, Rha-Rha-C10-C10, Rha-C10-C12db, Rha-C10-C10, Rha-Rha-C10-C12, Rha-C10-C12, and Rha-Rha-C10-C12db. Pseudomonas spp. also showed the variable production of osmoprotectants including N-acetyl glutaminyl glutamine amide (NAGGN), betaine, ectoine, and trehalose. Betaine and ectoine were produced by all pseudomonads, however, NAGGN and trehalose were observed by five and three strains, respectively. Four strains including P. chlororaphis (RP4), P. aeruginosa (At1RP4), P. fluorescens (RS1), and P. aurantiaca (PBSt2) were exposed to 1– 4% NaCl concentrations and evaluated for the changes in phenazine production profile which were negligible. AntiSMASH 5.0 platform showed 50 biosynthetic gene clusters in PB-St2, of which 23 (45%) were classified as putative gene clusters with ClusterFinder algorithm, five (10%) were classified as non-ribosomal peptides synthetases (NRPS), five (10%) as saccharides, and four (8%) were classified as putative fatty acids. The genomic attributes and comprehensive insights into the metabolomic profile of these Pseudomonas spp. strains showcase their phytostimulatory, phyto-protective, and osmoprotective effects of diverse crops grown in normal and saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No specific data of this manuscript is identified for data availability.

References

  • Allison TM, Castric P (2016) Selective distribution of Pseudomonas aeruginosa O-antigen among strains producing group I pilin. FEMS Pathogens Dis. https://doi.org/10.1093/femspd/ftv102

    Article  Google Scholar 

  • Amrein H, Makart S, Granado J, Shakya R, Schneider-Pokorny J, Dudler R (2004) Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301 D-R. Mol Plant Microbe Interact 17:90–97. https://doi.org/10.1094/MPMI.2004.17.1.90

    Article  CAS  PubMed  Google Scholar 

  • Baldeweg F, Kage H, Sebastian S, Allen C, Hoffmeister D, Nett M (2017) Structure of ralsolamycin the interkingdom morphogen from the crop plant pathogen Ralstonia solanacearum. Org Lett 19:4868–4871. https://doi.org/10.1021/acs.orglett.7b02329

    Article  CAS  PubMed  Google Scholar 

  • Basnet DB, Oh TJ, Vu TT, Sthapit B, Liou K, Lee HC, Yoo JC, Sohng JK (2006) Angucyclines Sch 47554 and Sch 47555 from Streptomyces sp. SCC-2136: cloning, sequencing, and characterization. Mol Cells 22:154–162

    CAS  PubMed  Google Scholar 

  • Biggins JB, Ternei MA, Brady SF (2012) Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. J Am Chem Soc 134:13192–13195. https://doi.org/10.1021/ja3052156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cellini A, Donati I, Fiorentini L, Vandelle E, Polverari A, Venturi V et al (2020) N-Acyl homoserine lactones and Lux solos regulate social behaviour and virulence of Pseudomonas syringae pv. actinidiae. Microbial Ecol 79:383–396

    Article  CAS  Google Scholar 

  • Cesa-Luna C, Geudens N, Girard L, De Roo V, Maklad HR, Martins JC, Höfte M, De Mot R (2023) Charting the ipopeptidome of nonpathogenic Pseudomonas. Msystems 8:e00988-e1022. https://doi.org/10.1128/msystems.00988-22

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I et al (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Chevrette MG, Carlson CM, Ortega HE et al (2019) The antimicrobial potential of Streptomyces from insect microbiomes. Nat Commun. https://doi.org/10.1038/s41467-019-08438-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi KR, Cho JS, Cho IJ, Park D, Lee SY (2018) Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Metabol Eng 47:463–474

    Article  CAS  Google Scholar 

  • Clough SE, Jousset A, Elphinstone JG, Friman VP (2022) Combining in vitro and in vivo screening to identify efficient Pseudomonas biocontrol strains against the phytopathogenic bacterium Ralstonia solanacearum. Microbiol Open 11:e1283

    Article  CAS  Google Scholar 

  • D’aes J, Kieu NP, Léclère V, Tokarski C, Olorunleke FE, De Maeyer K et al (2014) To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a. Environ Microbiol 16:2282–2300. https://doi.org/10.1111/1462-2920.12462

    Article  CAS  PubMed  Google Scholar 

  • Dar D, Thomashow LS, Weller DM, Newman DK (2020) Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes. Elife 9:e59726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BD (1949) The isolation of biochemically deficient mutants of bacteria by means of penicillin. Proc Natl Acad Sci 35:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deveau A, Gross H, Palin B, Mehnaz S, Schnepf M, Leblond P et al (2016) Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiol Ecol 92:fiw107

    Article  PubMed  PubMed Central  Google Scholar 

  • Favre L, Ortalo-Magné A, Greff S, Pérez T, Thomas OP, Martin JC, Culioli G (2017) Discrimination of four marine biofilm-forming bacteria by LC-MS metabolomics and influence of culture parameters. J Proteome Res 16:1962–1975

    Article  CAS  PubMed  Google Scholar 

  • Ferreira NP, Ximenez GR, Chiavelli LU, Lucca DL, Santin SM, Zuluaga MY et al (2020) Acyl-homoserine lactone from plant-associated Pseudomonas sp. influences Solanum lycopersicum germination and root growth. J Chem Ecol 46:699–706

    Article  CAS  PubMed  Google Scholar 

  • Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW et al (2018) Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J Biol Chem 293:9824–9840. https://doi.org/10.1074/jbc.RA117.001005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerbino E, Carasi P, Mobili P, Serradell M, Gómez-Zavaglia A (2015) Role of S-layer proteins in bacteria. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-015-1952-9

    Article  PubMed  Google Scholar 

  • Khatri S, Sazinas P, Strube ML, Ding L, Dubey S, Shivay YS, Sharma S, Jelsbak L (2023) Pseudomonas is a key player in conferring disease suppressiveness in organic farming. Plant Soil 18:1–20. https://doi.org/10.1007/s11104-023-05927-6

    Article  CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clinical Med 44:301–307

    CAS  Google Scholar 

  • MacLean BX, Pratt BS, Egertson JD, MacCoss MJ, Smith RD, Baker ES (2018) Using skyline to analyze data-containing liquid chromatography, ion mobility spectrometry, and mass spectrometry dimensions. J Am Soc Mass Spectrom 29:2182–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masschelein J, Jenner M, Challis GL (2017) Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 34:712–783. https://doi.org/10.1039/c7np00010c

    Article  CAS  PubMed  Google Scholar 

  • Mehnaz S, Bauer JS, Gross H (2014) Complete genome sequence of the sugar cane endophyte Pseudomonas aurantiaca PB-St2, a disease-suppressive bacterium with antifungal activity toward the plant pathogen Colletotrichum falcatum. Genome Announc 2:e01108–e01113. https://doi.org/10.1128/genomeA.01108-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullins AJ, Webster G, Kim HJ, Zhao J, Petrova YD, Ramming CE, Jenner M, Murray JA, Connor TR, Hertweck C, Challis GL (2021) Discovery of the Pseudomonas polyyne protegencin by a phylogeny-guided study of polyyne biosynthetic gene cluster diversity. Mbio 12:e00715-e721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishu SD, No JH, Lee TK (2022) Transcriptional response and plant growth promoting activity of Pseudomonas fluorescens DR397 under drought stress conditions. Microbiol Spectr 10:e00979-e1022

    Article  PubMed  PubMed Central  Google Scholar 

  • Oni FE, Kieu Phuong N, Höfte M (2015) Recent advances in Pseudomonas biocontrol. In: Murillo J, Vinatzer BA, Jackson RW, Arnold DL (eds) Bacterial-plant interactions: advance research and future trends. Caister Academic Press, Poole, pp 167–198

    Google Scholar 

  • Orozco-Mosqueda MDC, Duan J, DiBernardo M, Zetter E, Campos-García J, Glick BR, Santoyo G (2019) The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Front Microbiol 10:1392. https://doi.org/10.3389/fmicb.2019.01392

    Article  PubMed  PubMed Central  Google Scholar 

  • Palazzotto E, Weber T (2018) Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr Opin Microbiol 45:109–116

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Paradeshi J, Chaudhari B (2016) Suppression of charcoal rot in soybean by moderately halotolerant Pseudomonas aeruginosa GS-33 under saline conditions. J Microbiol 56:889–899

    CAS  Google Scholar 

  • Rahimi K, Lotfabad TB, Jabeen F, Ganji SM (2019) Cytotoxic effects of mono-and di-rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 human breast cancer cells. Colloids Surf B 181:943–952

    Article  CAS  Google Scholar 

  • Ringel MT, Brüser T (2018) The biosynthesis of pyoverdines. Microbial Cell 5:424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robineau M, Le Guenic S, Sanchez L, Chaveriat L, Lequart V, Joly N, Calonne M, Jacquard C, Declerck S, Martin P, Dorey S (2020) Synthetic mono-rhamnolipids display direct antifungal effects and trigger an innate immune response in tomato against Botrytis cinerea. Molecules 25:3108

  • Schmid J, Sperl N, Sieber V (2014) A comparison of genes involved in sphingan biosynthesis brought up to date. Appl Microbiol Biotechnol 98:7719–7733. https://doi.org/10.1007/s00253-014-5940-z

    Article  CAS  PubMed  Google Scholar 

  • Seyedsayamdost MR (2014) High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. PNAS 111:7266–7271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid I, Rizwan M, Baig DN, Saleem RS, Malik KA, Mehnaz S (2017) Secondary metabolites production and plant growth promotion by Pseudomonas chlororaphis subsp. aurantiaca strains isolated from cotton, cactus, and para grass. J Microbiol Biotechnol 27:480–491

    Article  CAS  PubMed  Google Scholar 

  • Shahid I, Han J, Hardie D, Baig DN, Malik KA, Borchers CH, Mehnaz S (2021) Profiling of antimicrobial metabolites of plant growth promoting Pseudomonas spp. isolated from different plant hosts. 3 Biotech 11:1–14

    Article  Google Scholar 

  • Shi J, Chen Y, Liu X, Li D (2021) Rhamnolipid production from waste cooking oil using newly isolated halotolerant Pseudomonas aeruginosa M4. J Clean Product 278:123879

    Article  CAS  Google Scholar 

  • Sun S, Zhou L, Jin K, Jiang H, He YW (2016) Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium Pseudomonas aeruginosa PA1201. Sci Rep 6:1–14

    Google Scholar 

  • Tan IKP, Foong CP, Tan HT, Lim H, Zain NAA, Tan YC et al (2020) Polyhydroxyalkanoate (PHA) synthase genes and PHA-associated gene clusters in Pseudomonas spp. and Janthinobacterium spp. isolated from Antarctica. J Biotechnol 313:18–28

    Article  CAS  PubMed  Google Scholar 

  • Trapet P, Avoscan L, Klinguer A, Pateyron S, Citerne S, Chervin C, Mazurier S, Lemanceau P, Wendehenne D, Besson-Bard A (2016) The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol 171:675–693. https://doi.org/10.1104/pp.15.01537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallet-Gely I, Novikov A, Augusto L, Liehl P, Bolbach G, Péchy-Tarr M et al (2010) Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl Environ Microbiol 76:910–921. https://doi.org/10.1128/AEM.02112-09

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y et al (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34:828–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood TL, Gong T, Zhu L, Miller J, Miller DS, Yin B, Wood TK (2018) Rhamnolipids from Pseudomonas aeruginosa disperse the biofilms of sulfate-reducing bacteria. NPJ Biofilms Microbiol 4:1–8

    Article  CAS  Google Scholar 

  • Woodcock SD, Syson K, Little RH, Ward D, Sifouna D, Brown JKM et al (2021) Trehalose and α-glucan mediate distinct abiotic stress responses in Pseudomonas aeruginosa. PLoS Genet 17:e1009524. https://doi.org/10.1371/journal.pgen.1009524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Liu YP, Zhang LQ (2019) In silico and genetic analyses of cyclic lipopeptide synthetic gene clusters in Pseudomonas sp. 11K1. Front Microbiol 10:544. https://doi.org/10.3389/fmicb.2019.00544

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Han S, Zhang Y (2020) Comparative studies on the structural composition, surface/interface activity and application potential of rhamnolipids produced by Pseudomonas aeruginosa using hydrophobic or hydrophilic substrates. Bioresour Technol 295:122269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Muhmmad Adeel (English Language Expert) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

IS wrote the manuscript and performed practical work. CHB and JH helped in LCMS data analysis. Heatmap and statistical analysis was performed by SH. SM conceived the study, edited the manuscript and HAE proofread the manuscript.

Corresponding author

Correspondence to Samina Mehnaz.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 964 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, I., Han, J., Hanook, S. et al. Genome mining of Pseudomonas spp. hints towards the production of under-pitched secondary metabolites. 3 Biotech 13, 182 (2023). https://doi.org/10.1007/s13205-023-03607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03607-x

Keywords

Navigation