Skip to main content

Advertisement

Log in

Modulatory effects of phytol on the antiemetic property of domperidone, possibly through the D2 receptor interaction pathway: in vivo and in silico studies

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The current study is designed to evaluate the antiemetic effect of the diterpenoid phytol (PHY) using in vivo and in silico studies. For this, emesis was induced in 4-day-old chicks by the oral administration of copper sulfate (CuSO4.5H2O) at 50 mg/kg. To see the possible antiemetic mechanism of PHY, we used a number of reference drugs such as domperidone (80 mg/kg), ondansetron (24 mg/kg) and hyoscine (100 mg/kg) as positive controls, while the vehicle served as a negative control group. PHY was administered orally at the doses of 50 and 75 mg/kg. Both PHY and reference drugs were given alone or in combined groups to evaluate their synergistic or antagonistic effects on the chicks. Molecular docking of PHY and reference drugs was carried out against 5HT3, D2, D3, H1, NK1, and mAChRs (M1–M5) receptors for estimating binding affinity to the receptors. Drug-receptor interactions and active sites of the receptors were observed with the aid of different computational tools. The drug-likeness and pharmacokinetics of all the drugs were predicted through the SwissADME online database. The results suggest that PHY reduces the mean number of retches and increases latency dose-dependently in the birds. In the combination groups, PHY75 showed better antiemetic effects with domperidone and ondansetron. In addition, PHY exhibited the highest binding affinity with the D2 receptor (6CM4) (− 7.3 kcal/mol). In conclusion, PHY showed an antiemetic activity in chicks, possibly through the D2 receptor interaction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akita Y, Yang Y, Kawai T, Kinoshita K, Koyama K, Takahashi K, Watanabe K (1998) New assay method for surveying anti-emetic compounds from natural sources. Nat Prod Sci 4(2):72–77

    CAS  Google Scholar 

  • Ahmed S, Hasan MM, Ahmed SW (2014) Natural antiemetics: an overview. Pakistan J Pharm Sci 27:1583–1598

    Google Scholar 

  • Ahmed S, Hasan MM, Ahmed SW, Mahmood ZA, Azhar I, Habtemariam S (2013) Anti-emetic effects of bioactive natural products. Phytopharmacology 4(2):390–433

    CAS  Google Scholar 

  • Ariumi H, Saito R, Nago S, Hyakusoku M, Takano Y, Kamiya HO (2000) The role of tachykinin NK-1 receptors in the area postrema of ferrets in emesis. Neurosci Lett 286(2):123–126

    Article  CAS  PubMed  Google Scholar 

  • Azam SS, Abbasi SW (2013) Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor Biol Med Model 10(1):1–16

    Article  Google Scholar 

  • Becker DE (2010) Nausea, vomiting, and hiccups: a review of mechanisms and treatment. Anesth Prog 57(4):150–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman WC, Rand MJ (1980) Textbook of pharmacology, 2nd edn. Blackwell Scientific Publications

    Google Scholar 

  • Bhadra P (2020) Green Chiretta (Andrographispaniculata): in silico analysis of therapy for breast cancer. Indian J Nat Sci 10(60):20645–20652

    Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):1–13

    Article  Google Scholar 

  • Davis MP, Walsh D (2000) Treatment of nausea and vomiting in advanced cancer. Support Care Cancer 8(6):444–452

    Article  CAS  PubMed  Google Scholar 

  • Doenicke AW, Hoernecke R, Celik I (2004) Premedication with H1 and H2 blocking agents reduces the incidence of postoperative nausea and vomiting. Inflamm Res 53(2):S154–S158

    CAS  PubMed  Google Scholar 

  • Darmani NA, Zhao W, Ahmad B (1999) The role of D2 and D3 dopamine receptors in the mediation of emesis in Cryptotis parva (the least shrew). J Neural Transm 106(11):1045–1061

    Article  CAS  PubMed  Google Scholar 

  • Fukui H, Yamamoto M, Sasaki S, Sato S (1993) Involvement of 5-HT3 receptors and vagal afferents in copper sulfate-and cisplatin-induced emesis in monkeys. Eur J Pharmacol 249(1–2):13–18

    Article  CAS  PubMed  Google Scholar 

  • Fukui H, Yamamoto M, Sasaki S, Sato S (1994) Possible involvement of peripheral 5-HT4 receptors in copper sulfate-induced vomiting in dogs. Eur J Pharmacol 257(1–2):47–52

    Article  CAS  PubMed  Google Scholar 

  • Grahame-Smith DG (1986) The multiple causes of vomiting: is there a common mechanism. Nausea and vomiting: mechanisms and treatment. Springer, Berlin, Heidelberg, pp 1–8

    Google Scholar 

  • Garcia-Fuente A, Vazquez F, Vieitez JM, Garcia Alonso FJ, Martín JI, Ferrer J (2018) CISNE: an accurate description of dose-effect and synergism in combination therapies. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  • Gregory RE, Ettinger DS (1998) 5-HT3 receptor antagonists for the prevention of chemotherapy-induced nausea and vomiting. Drugs 55(2):173–189

    Article  CAS  PubMed  Google Scholar 

  • Galligan JJ (2002) Ligand-gated ion channels in the enteric nervous system. Neurogastroenterol Motil 14(6):611–623

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Driscoll P (2005) 10 Nausea, vomiting and fever. Emerg Med J 22(3):200–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornby PJ (2001) Central neurocircuitry associated with emesis. Am J Med 111(8):106–112

    Article  Google Scholar 

  • Horn CC, Meyers K, Lim A, Dye M, Pak D, Rinaman L, Yates BJ (2014) Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews. Am J Physiol Regul Integr Compar Physiol 306(5):R341–R351

    Article  CAS  Google Scholar 

  • Hossein H, Mashallah M, Akbar G (2005) Antiemetic effect of Mentha xpiperita aerial parts extracts in young chickens. Iranian J Pharmaceut Sci 1(1):21–24

    Google Scholar 

  • Iqbal IM, Spencer R (2012) Postoperative nausea and vomiting. Anaesth Intensive Care Med 13(12):613–616

    Article  Google Scholar 

  • Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, Chandra SM, Karmakar UK, Yarla NS, Khan IN, Billah MM, Pieczynska MD, Zengin G, Malainer C, Nicoletti F, Gulei D, Berindan-Neagoe I, Apostolov A, Banach M, Yeung AWK, El-Demerdash A, Xiao J, Dey P, Yele S, Jóźwik A, Strzałkowska N, Marchewka J, Rengasamy KRR, Horbańczuk J, Kamal MA, Mubarak MS, Mishra SK, Shilpi JA, Atanasov AG (2018) Phytol: a review of biomedical activities. Food Chem Toxicol 121:82–94

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Ayatollahi SA, Zihad SNK, Sifat N, Khan MR, Paul A, Salehi B, Islam T, Mubarak MS, Martins N, Sharifi-Rad J (2020) Phytol anti-inflammatory activity: Pre-clinical assessment and possible mechanism of action elucidation. Cell Mol Biol 66(4):264–269

    Article  PubMed  Google Scholar 

  • Ibrahim MA, Abdelrahman AH, Badr EA, Almansour NM, Alzahrani OR, Ahmed MN, Soliman MES, Naeem MA, Shawky AM, Sidhom PA, Mekhemer GAH, Atia MA (2022) Naturally occurring plant-based anticancerous candidates as prospective ABCG2 inhibitors: an in silico drug discovery study. Mol Diversity 26(6):3255–3277

    Article  CAS  Google Scholar 

  • Jacoby HI (2018) Safety pharmacology and the GI tract. Toxicology of the gastrointestinal Tract. CRC Press, pp 53–81

    Chapter  Google Scholar 

  • Khan IA, Aziz A, Sarwar HS, Munawar SH, Manzoor Z, Anwar H (2014) Evaluation of antiemetic potential of aqueous bark extract of Cinnamon loureiroi. Canad J Appl Sci 4:26–32

    Article  Google Scholar 

  • Kudlak M, Tadi P (2021) Physiology, muscarinic receptor. StatPearls [Internet]. StatPearls Publishing

    Google Scholar 

  • Kalani MYS, Vaidehi N, Hall SE, Trabanino RJ, Freddolino PL, Kalani MA, Floriano WB, Kam VW, Goddard WA III (2004) The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc Natl Acad Sci 101(11):3815–3820

    Article  PubMed  PubMed Central  Google Scholar 

  • Katzung BG (2007) Basic and clinical pharmacology, 11th edn. Lange Medical Publications, pp 1084–1093

    Google Scholar 

  • Kumar S, Bhardwaj VK, Singh R, Das P, Purohit R (2022) Evaluation of plant-derived semi-synthetic molecules against BRD3-BD2 protein: a computational strategy to combat breast cancer. Mol Syst Design Eng 7(4):381–391

    Article  CAS  Google Scholar 

  • Kumar Bhardwaj V, Das P, Purohit R (2022) Identification and comparison of plant-derived scaffolds as selective CDK5 inhibitors against standard molecules: Insights from umbrella sampling simulations. J Mol Liq 348:118015

    Article  CAS  Google Scholar 

  • Lang IM (1990) Digestive tract motor correlates of vomiting and nausea. Can J Physiol Pharmacol 68(2):242–253

    Article  CAS  PubMed  Google Scholar 

  • Lim SY, Meyer M, Kjonaas RA, Ghosh SK (2006) Phytol-based novel adjuvants in vaccine formulation: 1. Assessment of safety and efficacy during stimulation of humoral and cell-mediated immune responses. J Immune Based Therapies Vaccines 4(1):1–11

    Google Scholar 

  • Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341

    Article  CAS  PubMed  Google Scholar 

  • MacDougall MR, Sharma S (2021) Physiology, chemoreceptor trigger zone. StatPearls [Internet]. StatPearls Publishing

    Google Scholar 

  • Miller AD, Leslie RA (1994) The area postrema and vomiting. Front Neuroendocrinol 15(4):301–320

    Article  CAS  PubMed  Google Scholar 

  • McGinty D, Letizia CS, Api AM (2010) Fragrance material review on phytol. Food Chem Toxicol 48:S59–S63

    Article  CAS  PubMed  Google Scholar 

  • Navari RM (2013) Management of chemotherapy-induced nausea and vomiting. Drugs 73(3):249–262

    Article  CAS  PubMed  Google Scholar 

  • Naylor RJ, Inall FC (1994) The physiology and pharmacology of postoperative nausea and vomiting. Anaesthesia 49:2–5

    Article  PubMed  Google Scholar 

  • Niijima A, Jiang ZY, Daunton NG, Fox RA (1987) Effect of copper sulphate on the rate of afferent discharge in the gastric branch of the vagus nerve in the rat. Neurosci Lett 80(1):71–74

    Article  CAS  PubMed  Google Scholar 

  • Navari RM, Reinhardt RR, Gralla RJ, Kris MG, Hesketh PJ, Khojasteh A, Kindler H, Grote TH, Pendergrass K, Grunberg SM, Carides AD, Gertz BJ (1999) Reduction of cisplatin-induced emesis by a selective neurokinin-1–receptor antagonist. N Engl J Med 340(3):190–195

    Article  CAS  PubMed  Google Scholar 

  • Pejin B, Savic A, Sokovic M, Glamoclija J, Ciric A, Nikolic M, Radotic K, Mojovic M (2014) Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Nat Prod Res 28(6):372–376

    Article  CAS  PubMed  Google Scholar 

  • Palermo G, De Vivo M (2014) Computational chemistry for drug discovery. Encyclopedia of Nanotechnology. Springer, pp 1–15

    Google Scholar 

  • Perwitasari DA, Gelderblom H, Atthobari J, Mustofa M, Dwiprahasto I, Nortier JW, Guchelaar HJ (2011) Anti-emetic drugs in oncology: pharmacology and individualization by pharmacogenetics. Int J Clin Pharm 33(1):33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pleuvry BJ (2006) Physiology and pharmacology of nausea and vomiting. Anaesth Intensive Care Med 7(12):473–477

    Article  Google Scholar 

  • Santos CCDMP, Salvadori MS, Mota VG, Costa LM, de Almeida AAC, de Oliveira GAL, Costa JP, de Sousa DP, de Freitas RM, de Almeida RN (2013) Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci J. https://doi.org/10.1155/2013/949452

    Article  PubMed  PubMed Central  Google Scholar 

  • Scorza KA, Williams A, Phillips JD, Shaw J (2007) Evaluation of nausea and vomiting. Am Fam Physician 76(1):76–84

    PubMed  Google Scholar 

  • Singh R, Bhardwaj VK, Purohit R (2022a) Inhibition of nonstructural protein 15 of SARS-CoV-2 by golden spice: a computational insight. Cell Biochem Funct. https://doi.org/10.1002/cbf.3753

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh R, Kumar S, Bhardwaj VK, Purohit R (2022b) Screening and reckoning of potential therapeutic agents against DprE1 protein of Mycobacterium tuberculosis. J Mol Liq 358:119101

    Article  CAS  Google Scholar 

  • Shankar A, Roy S, Malik A, Julka PK, Rath GK (2015) Prevention of Chemotherapy-Induced Nausea and Vomiting in Cancer Patients. Asian Pac J Cancer Prev 16(15):6207–6213

  • Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang SC, Borison HL (1951) Copper sulphate emesis: A study of afferent pathways from the gastrointestinal tract. Am J Physiol-Legacy Content 164(2):520–526

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article is according with to the international, national and institutional rules considering biodiversity rights.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuia, M.S., Islam, T., Rokonuzzman, M. et al. Modulatory effects of phytol on the antiemetic property of domperidone, possibly through the D2 receptor interaction pathway: in vivo and in silico studies. 3 Biotech 13, 116 (2023). https://doi.org/10.1007/s13205-023-03520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03520-3

Keywords

Navigation