Skip to main content
Log in

Analysis of apocarotenoid volatiles from lettuce (Lactuca sativa) induced by insect herbivores and characterization of carotenoid cleavage dioxygenase gene

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Plant apocarotenoids have been shown to have a diverse biological role in herbivore–plant interactions. Despite their importance, little is known about herbivores’ effect on apocarotenoid emissions in Lactuca sativa. In this study, we examined changes in apocarotenoid emissions in lettuce leaves after infestation by two insects, viz., Spodoptera littoralis larvae and Myzus persicae aphids. We found that β-ionone and β-cyclocitral showed higher concentrations than the other apocarotenoids, with a significant increase as per the intensity of infestation of both herbivore species. Furthermore, we performed functional characterization of Lactuca sativa carotenoid cleavage dioxygenase 1 (LsCCD1) genes. Three LsCCD1 genes were overexpressed in E. coli strains, and recombinant proteins were assayed for cleavage activity on an array of carotenoid substrates. The LsCCD1 protein cleaved β-carotene at the 9,10 (9′,10′) positions producing β-ionone. The transcript analysis of LsCCD1 genes revealed differential expression patterns under varying levels of herbivores’ infestation, but the results were inconsistent with the pattern of β-ionone concentrations. Our results suggest that LsCCD1 is involved in the production of β-ionone, but other regulatory factors might be involved in its induction in response to herbivory. These results provide new insights into apocarotenoid production in response to insect herbivory in lettuce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335(6074):1348–1351

    CAS  PubMed  Google Scholar 

  • Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9(3):315–321

    CAS  PubMed  Google Scholar 

  • Beltran JCM, Stange C (2016) Apocarotenoids: a new carotenoid-derived pathway. In: Carotenoids in nature. Springer, pp 239–272

  • Boo H-O, Heo B-G, Gorinstein S, Chon S-U (2011) Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Sci 181(4):479–484

    CAS  PubMed  Google Scholar 

  • Brewer PB, Yoneyama K, Filardo F, Meyers E, Scaffidi A, Frickey T, Akiyama K, Seto Y, Dun EA, Cremer JE (2016) Lateral branching oxidoreductase acts in the final stages of strigolactone biosynthesis in Arabidopsis. PNAS 113(22):6301–6306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cáceres L, Lakshminarayan S, Yeung K-C, McGarvey B, Hannoufa A, Sumarah M, Benitez X, Scott I (2016) Repellent and attractive effects of α-, β-, and dihydro-β-ionone to generalist and specialist herbivores. J Chem Ecol 42(2):107–117

    PubMed  Google Scholar 

  • Carballo-Uicab VM, Cárdenas-Conejo Y, Vallejo-Cardona AA, Aguilar-Espinosa M, Rodríguez-Campos J, Serrano-Posada H, Narváez-Zapata JA, Vázquez-Flota F, Rivera-Madrid R (2019) Isolation and functional characterization of two dioxygenases putatively involved in bixin biosynthesis in annatto (Bixa orellana L.). PeerJ 7:e7064

    PubMed  PubMed Central  Google Scholar 

  • d’Alessandro S, Havaux M (2019) Sensing β-carotene oxidation in photosystem II to master plant stress tolerance. New Phytol 223(4):1776–1783

    CAS  PubMed  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410(6828):577–580

    PubMed  Google Scholar 

  • Dickinson AJ, Lehner K, Mi J, Jia K-P, Mijar M, Dinneny J, Al-Babili S, Benfey PN (2019) β-Cyclocitral is a conserved root growth regulator. PNAS 116(21):10563–10567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faria LR, Zanella FC (2015) Beta-ionone attracts Euglossa mandibularis (Hymenoptera, Apidae) males in western Paraná forests. RBE 59:260–264

    Google Scholar 

  • Felemban A, Braguy J, Zurbriggen MD, Al-Babili S (2019) Apocarotenoids involved in plant development and stress response. Front Plant Sci 10:1168

    PubMed  PubMed Central  Google Scholar 

  • Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. PNAS 111(33):12246–12251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Zhu H, Shao Y, Chen A, Lu C, Zhu B, Luo Y (2008) Lycopene accumulation affects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato. J Integr Plant Biol 50(8):991–996

    CAS  PubMed  Google Scholar 

  • Gruber M, Xu N, Grenkow L, Li X, Onyilagha J, Soroka J, Westcott N, Hegedus D (2009) Responses of the crucifer flea beetle to Brassica volatiles in an olfactometer. Environ Entomol 38(5):1467–1479

    CAS  PubMed  Google Scholar 

  • Gu D, Yang D-R (2013) Utilisation of chemical signals by inquiline wasps in entering their host figs. J Insect Physiol 59(10):1065–1068

    CAS  PubMed  Google Scholar 

  • Gu D, Yang D-R, Yang P, Peng Y-Q, Wang Z-J (2016) Work division of floral scent compounds in mediating pollinator behaviours. Chem Ecol 32(8):733–741

    CAS  Google Scholar 

  • Hou X, Rivers J, León P, McQuinn RP, Pogson BJ (2016) Synthesis and function of apocarotenoid signals in plants. Trends Plant Sci 21(9):792–803

    CAS  PubMed  Google Scholar 

  • Huang F-C, Molnár P, Schwab W (2009) Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot 60(11):3011–3022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, Meir A, Burger Y, Hirschberg J, Schaffer AA, Katzir N (2006) Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry 67(15):1579–1589

    CAS  PubMed  Google Scholar 

  • Jüttner F, Watson SB, Von Elert E, Köster O (2010) β-Cyclocitral, a grazer defence signal unique to the cyanobacterium Microcystis. J Chem Ecol 36(12):1387–1397

    PubMed  Google Scholar 

  • Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ (2012) The tomato carotenoid cleavage dioxygenase 8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196(2):535–547

    CAS  PubMed  Google Scholar 

  • Li J, Hu H, Mao J, Yu L, Stoopen G, Wang M, Mumm R, de Ruijter NC, Dicke M, Jongsma MA (2019) Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone. New Phytol 223(3):1607–1620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv F, Zhou J, Zeng L, Xing D (2015) β-Cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis. J Exp Bot 66(15):4719–4732

    CAS  PubMed  Google Scholar 

  • Mathieu S, Terrier N, Procureur JM, Bigey F, Günata Z (2005) A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J Exp Bot 56(420):2721–2731

    CAS  PubMed  Google Scholar 

  • Meng N, Yan G-L, Zhang D, Li X-Y, Duan C-Q, Pan Q-H (2019) Characterization of two Vitis vinifera carotenoid cleavage dioxygenases by heterologous expression in Saccharomyces cerevisiae. Mol Biol Rep 46(6):6311–6323

    CAS  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    PubMed  Google Scholar 

  • Mondal R, Kesh D, Mukherjee D (2019) Role of induced volatile emission modelling tritrophic interaction. Differ Equ Dyn Syst, 30:749–765

  • Moreno JC, Mi J, Alagoz Y, Al-Babili S (2021a) Plant apocarotenoids: from retrograde signaling to interspecific communication. Plant J 105(2):351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno JC, Mi J, Alagoz Y, Al-Babili S (2021b) Plant apocarotenoids: from retrograde signaling to interspecific communication. Plant J 105(2):351–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murata M, Kobayashi T, Seo S (2020) α-Ionone, an apocarotenoid, induces plant resistance to western flower thrips, Frankliniella occidentalis, independently of jasmonic acid. Molecules 25(1):17

    CAS  Google Scholar 

  • Nawade B, Shaltiel-Harpaz L, Yahyaa M, Bosamia TC, Kabaha A, Kedoshim R, Zohar M, Isaacson T, Ibdah M (2020) Analysis of apocarotenoid volatiles during the development of Ficus carica fruits and characterization of carotenoid cleavage dioxygenase genes. Plant Sci 290:110292

    CAS  PubMed  Google Scholar 

  • Nyalala SO, Petersen MA, Grout BWW (2013) Volatile compounds from leaves of the African spider plant (Gynandropsis gynandra) with bioactivity against spider mite (Tetranychus urticae). Ann Appl Biol 162(3):290–298

    CAS  Google Scholar 

  • Ohmiya A (2009) Carotenoid cleavage dioxygenases and their apocarotenoid products in plants. Plant Biotechnol 26(4):351–358

    CAS  Google Scholar 

  • Ômura H, Honda K, Hayashi N (2000) Floral scent of Osmanthus fragrans discourages foraging behavior of cabbage butterfly. Pieris Rapae J Chem Ecol 26(3):655–666

    Google Scholar 

  • Ozawa R, Arimura G-i, Takabayashi J, Shimoda T, Nishioka T (2000) Involvement of jasmonate-and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol 41(4):391–398

    CAS  PubMed  Google Scholar 

  • Pareja M, Moraes MC, Clark SJ, Birkett MA, Powell W (2007) Response of the aphid parasitoid Aphidius funebris to volatiles from undamaged and aphid-infested Centaurea nigra. J Chem Ecol 33(4):695

    CAS  PubMed  Google Scholar 

  • Phoonan W, Deowanish S, Chavasiri W (2014) Food attractant from mulberry leaf tea and its main volatile compounds for the biocontrol of Lasioderma serricorne F. (Coleoptera: Anobiidae). J Stored Prod Res 59:299–305

    Google Scholar 

  • Piesik D, Weaver D, Runyon J, Buteler M, Peck G, Morrill W (2008) Behavioural responses of wheat stem sawflies to wheat volatiles. Agric for Entomol 10(3):245–253

    Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    CAS  PubMed  Google Scholar 

  • Quiroz A, Pettersson J, Pickett J, Wadhams L, Niemeyer H (1997) Semiochemicals mediating spacing behavior of bird cherry-oat aphid, Rhopalosiphum padi feeding on cereals. J Chem Ecol 23(11):2599–2607

    CAS  Google Scholar 

  • Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat J-L, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158(3):1267–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigo MJ, Alquézar B, Alós E, Medina V, Carmona L, Bruno M, Al-Babili S, Zacarías L (2013) A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. J Exp Bot 64(14):4461–4478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz SH, Qin X, Zeevaart JD (2001) Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276(27):25208–25211

    CAS  PubMed  Google Scholar 

  • Shumbe L, d’Alessandro S, Shao N, Chevalier A, Ksas B, Bock R, Havaux M (2017) Methylene blue sensitivity 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of β-cyclocitral. Plant Cell Environ 40(2):216–226

    CAS  PubMed  Google Scholar 

  • Silva DB, Weldegergis BT, Van Loon JJ, Bueno VH (2017) Qualitative and quantitative differences in herbivore-induced plant volatile blends from tomato plants infested by either Tuta absoluta or Bemisia tabaci. J Chem Ecol 43(1):53–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ (2021) Carotenoids and apocarotenoids in planta: their role in plant development, contribution to the flavour and aroma of fruits and flowers, and their nutraceutical benefits. Plants 10(11):2321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004a) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. Plant J 40(6):882–892

    CAS  PubMed  Google Scholar 

  • Simkin AJ, Underwood BA, Auldridge M, Loucas HM, Shibuya K, Schmelz E, Clark DG, Klee HJ (2004b) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-ionone, a fragrance volatile of petunia flowers. Plant Physiol 136(3):3504–3514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simko I, Hayes RJ, Mou B, McCreight JD (2014) Lettuce and spinach. Yield Gains in Major US Field Crops 33:53–85

    Google Scholar 

  • Stam JM, Kroes A, Li Y, Gols R, van Loon JJ, Poelman EH, Dicke M (2014) Plant interactions with multiple insect herbivores: from community to genes. Annu Rev Plant Biol 65:689–713

    CAS  PubMed  Google Scholar 

  • Stanley L, Yuan Y-W (2019) Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01017

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulvai F, Chaúque BJM, Macuvele DLP (2016) Intercropping of lettuce and onion controls caterpillar thread, Agrotis ípsilon major insect pest of lettuce. Chem Biol Technol Agric 3(1):1–5

    Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35(1):44–56

    CAS  PubMed  Google Scholar 

  • Venthur H, Zhou JJ, Mutis A, Ceballos R, Mella-Herrera R, Larama G, Avila A, Iturriaga-Vásquez P, Faundez-Parraguez M, Alvear M (2016) β-Ionone as putative semiochemical suggested by ligand binding on an odorant-binding protein of Hylamorpha elegans and electroantennographic recordings. Entomol Sci 19(3):188–200

    Google Scholar 

  • Vogel JT, Tan B-C, McCarty DR, Klee HJ (2008) The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem 283(17):11364–11373

    CAS  PubMed  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28(4):663–692

    CAS  PubMed  Google Scholar 

  • Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232(1):1–17

    CAS  PubMed  Google Scholar 

  • Wang S, Ghisalberti EL, Ridsdill-Smith J (1999) Volatiles from Trifolium as feeding deterrents of redlegged earth mites. Phytochemistry 52(4):601–605

    CAS  Google Scholar 

  • Wang J, Zhang N, Zhao M, Jing T, Jin J, Wu B, Wan X, Schwab W, Song C (2020) Carotenoid cleavage dioxygenase 4 catalyzes the formation of carotenoid-derived volatile β-ionone during tea (Camellia sinensis) withering. J Agric Food Chem 68(6):1684–1690

    CAS  PubMed  Google Scholar 

  • Wei S, Hannoufa A, Soroka J, Xu N, Li X, Zebarjadi A, Gruber M (2011) Enhanced β-ionone emission in Arabidopsis over-expressing AtCCD1 reduces feeding damage in vivo by the crucifer flea beetle. Environ Entomol 40(6):1622–1630

    CAS  PubMed  Google Scholar 

  • Yahyaa M, Bar E, Dubey NK, Meir A, Davidovich-Rikanati R, Hirschberg J, Aly R, Tholl D, Simon PW, Tadmor Y (2013) Formation of norisoprenoid flavor compounds in carrot (Daucus carota L.) roots: characterization of a cyclic-specific carotenoid cleavage dioxygenase 1 gene. J Agric Food Chem 61(50):12244–12252

    CAS  PubMed  Google Scholar 

  • Yahyaa M, Berim A, Isaacson T, Marzouk S, Bar E, Davidovich-Rikanati R, Lewinsohn E, Ibdah M (2015) Isolation and functional characterization of carotenoid cleavage dioxygenase-1 from Laurus nobilis L. (Bay Laurel) fruits. J Agric Food Chem 63(37):8275–8282

    CAS  PubMed  Google Scholar 

  • Yang X, Wei S, Liu B, Guo D, Zheng B, Feng L, Liu Y, Tomás-Barberán FA, Luo L, Huang D (2018) A novel integrated non-targeted metabolomic analysis reveals significant metabolite variations between different lettuce (Lactuca sativa L.) varieties. Hortic Res 5(1):1–14

    Google Scholar 

  • Yu H, Zhang Y, Li Y, Lu Z, Li X (2018) Herbivore-and MeJA-induced volatile emissions from the redroot pigweed Amaranthus retroflexus Linnaeus: their roles in attracting Microplitis mediator (Haliday) parasitoids. Arthropod Plant Interact 12(4):575–589

    Google Scholar 

Download references

Funding

This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript. The following authors have affiliations with organizations with direct or indirect financial interest in the subject matter discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors KM, MEL, BN, MY, LSH, MC, AS, and MI have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding author

Correspondence to Mwafaq Ibdah.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, K., Eldar-Liebreich, M., Nawade, B. et al. Analysis of apocarotenoid volatiles from lettuce (Lactuca sativa) induced by insect herbivores and characterization of carotenoid cleavage dioxygenase gene. 3 Biotech 13, 94 (2023). https://doi.org/10.1007/s13205-023-03511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03511-4

Keywords

Navigation