Skip to main content

Advertisement

Log in

Apoptotic effects of Phlomis armeniaca mediated biosynthesized silver nanoparticles in monolayer (2D) and spheroid (3D) cultures of human breast cancer cell lines

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The purpose of current research was to assess the apoptotic effects of biofabrication silver nanoparticles (AgNPs) mediated by the aqueous extract of Phlomis armeniaca on human breast cancer cells (MCF-7 and MDA-MB-231) in monolayer (2D) and spheroid (3D) cultures. The biosynthesized AgNPs were characterized by UV–Vis spectrophotometer (the peaks of resonances at 432 nm), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). 1–20 µM/mL AgNPs were applied to MCF-7 and MDA-MB-231 cell lines to determine IC50 values at 24, 48 and 72nd h and were found to be 10 µM/mL for both cell lines. Immunohistochemical staining results of BrdU, TUNEL, caspase-3 and Endo G in both 2D and 3D cultures and gene expression levels of caspases (caspase-3, -8 and -9) and Endo G were evaluated. Moreover, the total oxidant/antioxidant status (TOS–TAS) due to AgNPs application in both cell culture mediums was evaluated. AgNPs treatment results in both cell lines in both 2D and 3D cultures showed a significant decrease in the BrdU labeling index, while large amounts of cells were labelled with TUNEL and Endo G. In 2D culture, Endo G expression increased in MCF-7 cells at 48 and 72nd hours, while it increased significantly in MDA-MB-231 cells at all hours. OSI results show that ROS production is increased in cell medium treated with AgNPs. In conclusion, AgNPs mediated by Phlomis armeniaca, synthesized by a green method, successfully induced damage to mitochondria, resulting in cell cycle arrest and consequent cell proliferation blockade and death in both MCF-7 and MDA-MB-231 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1):120. https://doi.org/10.3390/ijms18010120

    Article  CAS  Google Scholar 

  • Ahn EY, Park Y (2020) Anticancer prospects of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C Mater Biol Appl 116:111253. https://doi.org/10.1016/j.msec.2020.111253. (Epub 2020 Jul 3)

    Article  CAS  Google Scholar 

  • Alimbetov D, Askarova S, Umbayev B, Davis T, Kipling D (2018) Pharmacological targeting of cell cycle, apoptotic and cell adhesion signaling pathways implicated in chemoresistance of cancer cells. Int J Mol Sci 19(6):1690. https://doi.org/10.3390/ijms19061690

    Article  CAS  Google Scholar 

  • Al-kawmani AA, Alanazi KM, Farah MA, Ali MA, Hailan WAQ, Al-Hemaid FMA (2020) Apoptosis-inducing potential of biosynthesized silver nanoparticles in breast cancer cells. J King Saud Univ Sci 32:2480–2488

    Article  Google Scholar 

  • Bagur H, Medidi RS, Somu P, Choudhury PWJ, Karua CS, Guttula PK, Melappa G, Poojari CC (2020) Endophyte fungal isolate mediated biogenic synthesis and evaluation of biomedical applications of silver nanoparticles. Mater Technol 37(3):167–178. https://doi.org/10.1080/10667857.2020.1819089

    Article  CAS  Google Scholar 

  • Bayram D, Çetin E, Kara M, Özgöçmen M, Candan I (2017) The apoptotic effects of silibinin on MDA-MB-231 and MCF-7 human breast carcinoma cells. Hum Exp Toxicol 36(6):573–586. https://doi.org/10.1177/0960327116658105

    Article  CAS  Google Scholar 

  • Bayram D, Armagan İ, Özgöcmen M, Senol N, Calapoglu M (2018) Determination of apoptotic effect of juglone on human bladder cancer TCC-SUP and RT-4 cells: an in vitro study. J Environ Pathol Toxicol Oncol 37(2):173–181. https://doi.org/10.1615/JEnvironPatholToxicolOn

    Article  Google Scholar 

  • Bayram D, Özgöçmen M, Armagan I, Sevimli M, Türel GY, Şenol N (2019) Investigation of apoptotic effect of juglone on CCL-228-SW 480 colon cancer cell line. J Can Res Ther 15:68–74

    CAS  Google Scholar 

  • Berumen A, Jimenez Moyao G, Rodriguez NM, Ilbawi AM, Migliore A, Shulman LN (2018) Defining priority medical devices for cancer management: a WHO initiative. Lancet Oncol 19(12):e709–e719. https://doi.org/10.1016/S1470-2045(18)30658-2

    Article  Google Scholar 

  • Cameron SJ, Hosseinian F, Willmore WGA (2018) Current overview of the biological and cellular effects of nanosilver. Int J Mol Sci 19:2030

    Article  Google Scholar 

  • Çelik DA, Gurbuz N, Toğay VA, Özçelik N (2020) Ochratoxin A causes cell cycle arrest in G1 and G1/S phases through p53 in HK-2 cells. Toxicon 180:11–17

    Article  Google Scholar 

  • Chandra H, Kumari P, Bontempi E, Yadav S (2020) Medicinal plants: treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal Agric Biotechnol 24:101518. https://doi.org/10.1016/j.bcab.2020.101518

    Article  Google Scholar 

  • Chaudhari AN, Ingale AG (2016) Syzygium aromaticum extract mediated, rapid and facile biogenic synthesis of shape-controlled (3D) silver nanocubes. Bioprocess Biosyst Eng 39:883–891. https://doi.org/10.1007/s00449-016-1567-z

    Article  CAS  Google Scholar 

  • Dalar A, Uzun Y, Mukemre M, Turker M, Konczak I (2015) Centaurea karduchorum Boiss. from Eastern Anatolia: phenolic composition, antioxidant and enzyme inhibitory activities. J Herb Med 5:211–216

    Article  Google Scholar 

  • De Matteis V, Cascione M, Toma CC, Leporatti S (2018) Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials 8(5):319. https://doi.org/10.3390/nano8050319

    Article  CAS  Google Scholar 

  • Dikshit PK, Kumar J, Das AK, Sadhu S, Sharma S, Singh S, Gupta PK, Kim BS (2021) Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11(8):902. https://doi.org/10.3390/catal11080902

    Article  CAS  Google Scholar 

  • El-Deeb NM, Khattab SM, Abu-Youssef MA, Badr AMA (2022) Green synthesis of novel stable biogenic gold nanoparticles for breast cancer therapeutics via the induction of extrinsic and intrinsic pathways. Sci Rep 12(1):11518. https://doi.org/10.1038/s41598-022-15648-y

    Article  CAS  Google Scholar 

  • Erdogan O, Abbak M, Demirbolat GM, Birtekocak F, Aksel M, Pasa S et al (2019) Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: the characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One 14(6):e0216496. https://doi.org/10.1371/journal.pone.0216496

    Article  CAS  Google Scholar 

  • Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37(4):277–285

    Article  CAS  Google Scholar 

  • Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38(12):1103–1111

    Article  CAS  Google Scholar 

  • Fard SE, Tafvizi F, Torbati MB (2018) Silvernanoparticles biosynthesisedusing Centella asiatica leaf extract: apoptosis induction in MCF-7 breast cancer cell line. IET Nanobiotechnol 12(7):994–1002. https://doi.org/10.1049/iet-nbt.2018.5069

    Article  Google Scholar 

  • Ferrín G, Linares CI, Muntané J (2011) Mitochondrial drug targets in cell death and cancer. Curr Pharm Des 17(20):2002–2016. https://doi.org/10.2174/138161211796904803

    Article  Google Scholar 

  • Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S (2013a) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed 8:4399–4413. https://doi.org/10.2147/IJN.S51881

    Article  CAS  Google Scholar 

  • Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim J-H (2013b) Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int 2013:1–10. https://doi.org/10.1155/2013/535796. (Article ID 535796)

    Article  CAS  Google Scholar 

  • Gurunathan S, Park JH, Han JW, Kim JH (2015) Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomed 29(10):4203–4222. https://doi.org/10.2147/IJN.S83953

    Article  CAS  Google Scholar 

  • Hano C, Abbasi BH (2022) Plant-based green synthesis of nanoparticles: production, characterization and applications. Biomolecules 12:31. https://doi.org/10.3390/biom12010031

    Article  CAS  Google Scholar 

  • Higgins GC, Beart PM, Nagley P (2009) Oxidative stress triggers neuronal caspase-independent death: endonuclease G involvement in programmed cell death-type III Cell. Mol Life Sci 66:2773–2787

    Article  CAS  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh S (2015) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560

    Article  Google Scholar 

  • Jahed FS, Hamidi S (2020) Applications of surface plasmon resonance in human health care. Nanomedicine 15(19):1823–1827

    Article  CAS  Google Scholar 

  • Javed R, Zia M, Naz S et al (2020) Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol 18:172. https://doi.org/10.1186/s12951-020-00704-4

    Article  Google Scholar 

  • Karakas FP, Turker AU (2016) Improvement of shoot proliferation and comparison of secondary metabolites in shoot and callus cultures of Phlomis armeniaca by LC-ESI-MS/MS analysis. In Vitro Cell Dev Biol Plant 52:608–618. https://doi.org/10.1007/s11627-016-9792-3

    Article  CAS  Google Scholar 

  • Khader SZA, Syed Zameer Ahmed S, Ganesan GM et al (2020) Rhynchosia rufescens AgNPs enhance cytotoxicity by ROS-mediated apoptosis in MCF-7 cell lines. Environ Sci Pollut Res 27:2155–2164. https://doi.org/10.1007/s11356-019-06479-y

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: Properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  • Konczak I, Dalar A, Konczak-Islam KA (2014) Health attributes, antioxidant properties and phytochemical composition of traditional medicinal plants from Eastern Anatolia (chapter 7). In: Pereira DAM (ed) Medicinal plants. Nova Science Publishers Inc, Hauppauge, pp 183–227

    Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A (2014) Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: an ecofriendly approach. Ind Crop Prod 58:238–243

    Article  CAS  Google Scholar 

  • Lemarié A, Lagadic-Gossmann D, Morzadec C et al (2004) Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic Biol Med 36:1517–1531

    Article  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  CAS  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6(1):35–44

    Article  CAS  Google Scholar 

  • Martínez-Cabanas M, López-García M, Rodríguez-Barro P, Vilariño T, Lodeiro P, Herrero R, Barriada JL, Sastre de Vicente ME (2021) Antioxidant capacity assessment of plant extracts for green synthesis of nanoparticles. Nanomaterials (basel) 11(7):1679. https://doi.org/10.3390/nano11071679

    Article  CAS  Google Scholar 

  • Morais M, Teixeira AL, Dias F, Machado V, Medeiros R, Prior JAV (2020) Cytotoxic effect of silver nanoparticles synthesized by green methods in cancer. J Med Chem 63(23):14308–14335. https://doi.org/10.1021/acs.jmedchem.0c01055

    Article  CAS  Google Scholar 

  • Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Dashtaki AS, Babapoor A, Arjmand O (2018) Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif Cells Nanomed Biotechnol 46(sup3):855–872. https://doi.org/10.1080/21691401.2018.1517769

    Article  CAS  Google Scholar 

  • Nayak D, Kumari M, Rajachandar S, Ashe S, Thathapudi NC, Nayak B (2016) Biofilm impeding agnps target skin carcinoma by inducing mitochondrial membrane depolarization mediated through ros production. ACS Appl Mater Interfaces 8:28538–28553

    Article  CAS  Google Scholar 

  • Nilghaz A, Mousavi SM, Tian J, Cao R, Guijt RM, Wang X (2021) Noble-metal nanoparticle-based colorimetric diagnostic assays for point-of-need applications. ACS Appl Nano Mater 4(12):12808–12824

    Article  CAS  Google Scholar 

  • Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran TB, Lam SE, Khandaker MU, Bradley DA (2022) Biological agents for synthesis of nanoparticles and their applications. J King Saud Univ Sci 34:101869

    Article  Google Scholar 

  • Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf Proc 1724:020048

    Article  Google Scholar 

  • Rohini B, Akther T, Waseem M, Khan J, Kashif M, Hemalatha S (2019) AgNPs from Nigella sativa control breast cancer: an in vitro study. J Environ Pathol Toxicol Oncol 38:185–194

    Article  Google Scholar 

  • Salman G, Pehlivanoglu S, Aydin Acar C et al (2021) Anticancer effects of Vitis vinifera L. mediated biosynthesized silver nanoparticles and cotreatment with 5 fluorouracil on HT-29 cell line. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02923-8

    Article  Google Scholar 

  • Saracoglu I, Inome M, Calis I, Ogihara Y (1995) Studies on constituents with cytotoxic and cytostatic activity of 2 Turkish medicinal-plants Phlomis armeniaca and Scutellaria salviifolia. Biol Pharm Bull 18:1396–1400

    Article  CAS  Google Scholar 

  • Saravanakumar K, Chelliah R, Shanmugam S, Varukattu NB, Oh DH, Kathiresan K, Wang MH (2018) Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. J Photochem Photobiol 185:126–135

    Article  CAS  Google Scholar 

  • Sarikurkcu C, Uren MC, Tepe B, Cengiz M, Kocak MS (2015) Phlomis armeniaca: phenolic compounds, enzyme inhibitory and antioxidant activities. Ind Crops Prod 78:95–101

    Article  CAS  Google Scholar 

  • Satpathy S, Patra A, Ahirwar B, Delwar Hussain M (2018) Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artif Cells Nanomed Biotechnol 46:71–85

    Article  CAS  Google Scholar 

  • Saxena SK, Nyodu R, Kumar S, Maurya VK (2020) Current advances in nanotechnology and medicine. In: Saxena S, Khurana S (eds) NanoBioMedicine. Springer, Singapore

    Chapter  Google Scholar 

  • Shariq Ahmed M, Soundhararajan R, Akther T et al (2019) Biogenic AgNPs synthesized via endophytic bacteria and its biological applications. Environ Sci Pollut Res 26:26939–26946. https://doi.org/10.1007/s11356-019-05869-6

    Article  CAS  Google Scholar 

  • Shin SW, Song IH, Um SH (2015) Role of physicochemical properties in nanoparticle toxicity. Nanomaterials 5:1351–1365

    Article  CAS  Google Scholar 

  • Simsek A, Pehlivanoglu S, Aydin Acar C (2021) Anti-proliferative and apoptotic effects of green synthesized silver nanoparticles using Lavandula angustifolia on human glioblastoma cells. 3 Biotech 11:374. https://doi.org/10.1007/s13205-021-02923-4

    Article  Google Scholar 

  • Taha RH (2022) Green synthesis of silver and gold nanoparticles and their potential applications as therapeutics in cancer therapy; a review. Inorg Chem Commun 143:109610. https://doi.org/10.1016/j.inoche.2022.109610

    Article  CAS  Google Scholar 

  • Turker AU, Yıldırım AB (2013) Evaluation of antibacterial and antitumor activities of some Turkish endemic plants. Trop J Pharm Res 12(6):1003–1010

    Article  Google Scholar 

  • Ullah I, Khalil AT, Ali M, Iqbal J, Ali W, Alarifi S, Shinwari ZK (2020) Green-synthesized silver nanoparticles induced apoptotic cell death in MCF-7 breast cancer cells by generating reactive oxygen species and activating caspase 3 and 9 enzyme activities. Oxid Med Cell Longev 2020:1–14

    Article  Google Scholar 

  • Venugopal K, Rather HA, Rajagopal K, Shanthi MP, Sheriff K, Illiyas M, Rather RA, Manikandan E, Uvarajan S, Bhaskar M et al (2017) Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J Photochem Photobiol B 167:282–289

    Article  CAS  Google Scholar 

  • Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321(3):288–300. https://doi.org/10.1001/jama.2018.19323

    Article  CAS  Google Scholar 

  • Yedjou CG et al (2019) Health and racial disparity in breast cancer. In: Ahmad A (ed) Breast cancer metastasis and drug resistance advances in experimental medicine and biology, vol 1152, 3rd edn. Springer, Cham, pp 31–50. https://doi.org/10.1007/978-3-030-20301-6_3Velazquez

    Chapter  Google Scholar 

  • Yeşilot Ş, Dönmez S (2021) Cytotoxic effect of green synthesized silver nanoparticles with Salvia officinalis on MCF-7 human breast cancer cells. TJHSL 4(3):133–139

    Google Scholar 

  • Yumrutas O, Saygideger SD (2012) Determination of antioxidant and antimutagenic activities of Phlomis armeniaca and Mentha pulegium. J Appl Pharm Sci 02(2012):36–40

    Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

SY: designed the study, performed the synthesis and characterization of nanoparticles, investigated biochemical experiments, involved in statistical analysis and drafted the paper. DB: designed the study and methodology, performed cell culture experiments, investigated histological and immunohistochemical assays, involved in statistical analysis. MO: performed cell culture experiments, investigated histological and immunohistochemical assays, visualizationed the results. VAT: performed molecular experiments, visualizationed the results, involved in statistical analysis. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Sukriye Yesilot.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yesilot, S., Bayram, D., Özgöçmen, M. et al. Apoptotic effects of Phlomis armeniaca mediated biosynthesized silver nanoparticles in monolayer (2D) and spheroid (3D) cultures of human breast cancer cell lines. 3 Biotech 13, 4 (2023). https://doi.org/10.1007/s13205-022-03417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03417-7

Keywords

Navigation