Skip to main content
Log in

Inoculation of Trichoderma asperelloides ameliorates aluminum stress-induced damages by improving growth, photosynthetic pigments and organic solutes in maize

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Excess aluminum (Al) is a stressful condition that affects plant growth and yield quality. This study evaluates growth responses and changes in the contents of photosynthetic pigments and organic solute in maize (Zea mays L.) plants inoculated with Trichoderma asperelloides isolates (T01, T02, T74, T76, or T96) and treated with increasing doses of Al (0, 50, 100, 150, and 200 µM of Al). Uninoculated unstressed plants served as control. Absolute growth rate, root length, dry biomass (shoot, roots and total) and shoot:root ratio were significantly affected in Al-stressed maize plants inoculated with T. asperelloides. Also, chlorophylls (a, b and total) were significantly reduced, whereas carotenoids and anthocyanins increased in those plants. Except for carotenoids, all parameters increased in plants inoculated with T. asperelloides, especially T01 or T02 isolates. Anthocyanins increased by 50% in plants inoculated with T74 and treated with 100 or 150 µM Al as compared to control plants. Total soluble carbohydrates increased by 74% and 101% in plants inoculated with T74 and T76, respectively, and treated with 200 µM Al. Total free amino acids increased more than 50% in plants inoculated with T02 and treated with 150 and 200 µM Al. Free prolines increased by 90%, 145% and 165% in plants inoculated with T74 and treated 100, 150 and 200 µM Al, respectively, in comparison to the unstressed control plants. We concluded that T. asperelloides positively affected growth, photosynthetic pigments, and organic solutes of Al-stressed plants, especially those inoculated with T01, T02, or T74 isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali A, Zeshan MA, Mehtab M, Khursheed S, Mudasir M, Abid M, Mahdi M, Rauf HA, Ameer S, Younis M, Altaf MT, Tahir A (2021) A Comprehensive note on Trichoderma as a potential biocontrol agent against soil borne fungal pathogens: A Review. Plant Prot 5(3):171–196

    Article  Google Scholar 

  • Alotaibi MO, Saleh AM, Sobrinho RL, Sheteiwy MS, El-Sawah AM, Mohammed AE, Elgawad HA (2021) Arbuscular mycorrhizae mitigate aluminum toxicity and regulate proline metabolism in plants grown in acidic soil. J Fungi 7(7):531

    Article  CAS  Google Scholar 

  • Amir R, Taufiq S, Noor N, Nauman I, Munir F, Keyani R, Tahir AT (2018) Stress signaling under metal and metalloid toxicity. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under Metal and Metalloid Stress: Responses, Tolerance and Remediation. Springer, Singapore, pp 149–184

    Chapter  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin JA, Maguin E, Mauchline T, McClure R, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran GS, Selvin J, Souza RSC, van Overbeek L, Singh BK, Wagner M, Walsh A, Sessitsch A, Schloter M (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8(1):1–22

    Google Scholar 

  • Carvalho Filho MR (2013) Identification and phylogenetic relationships, the potential use of Trichoderma isolate in the control of white mold and as growth promoters of common bean. University of Brasília, Thesis

    Google Scholar 

  • Chauhan DK, Yadav V, Vaculik M, Gassmann W, Pike S, Arif N, Singh VP, Deshmukh R, Sahi S, Tripathi DK (2021) Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit Rev Biotechnol 41(5):715–730

    Article  CAS  PubMed  Google Scholar 

  • Coelho CJ, Bombardelli RGH, Schulze GS, Caires EF, Matiello RR (2019) Genetic control of aluminum tolerance in tropical maize germplasm. Bragantia 78:71–81

    Article  Google Scholar 

  • Collini E (2019) Carotenoids in photosynthesis: the revenge of the “accessory” pigments. Chem 5(3):494–495

    Article  CAS  Google Scholar 

  • CONAB (Companhia Nacional do Abastecimento) (2022) Milho In CONAB (|Org) Acompanhamento da safra brasileira de grãos. Sexto Levantamento. 9(6):55–67

    Google Scholar 

  • Cornejo-Ríos K, Osorno-Suárez MDP, Hernández-León S, Reyes-Santamaría MI, Juárez-Díaz JA, Pérez-España VH, Armando Peláez-Acero A, Madariaga-Navarrete A, Saucedo-García M (2021) Impact of Trichoderma asperellum on chilling and drought stress in tomato (Solanum lycopersicum). Horticulturae 7(10):385

    Article  Google Scholar 

  • Doni F, Zain CRCM, Isahak A, Fathurrahman F, Anhar A, Mohamad WNAW, Yusoff WMW, Uphoff N (2018) A simple, efficient, and farmer-friendly Trichoderma-based biofertilizer evaluated with the SRI Rice Management System. Org Agr 8(3):207–223

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Elkelish AA, Alhaithloul HAS, Qari SH, Soliman MH, Hasanuzzaman M (2020) Pretreatment with Trichoderma harzianum alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular mechanisms. Environ Exp Bot 171:103946

    Article  CAS  Google Scholar 

  • Eslahi N, Kowsari M, Motallebi M, Zamani MR, Moghadasi Z (2020) Influence of recombinant Trichoderma strains on growth of bean (Phaseolus vulgaris L.) by increased root colonization and induction of root growth related genes. Sci Hortic 261:1–13

    Article  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotox Environ Safe 156:225–246

    Article  CAS  Google Scholar 

  • Farias CP, Carvalho RC, Resende FML, Azevedo LCB (2018) Consortium of five fungal isolates conditioning root growth and arbuscular mycorrhiza in soybean, corn, and sugarcane. An Acad Bras Ciênc 90(4):3649–3660

    Article  CAS  PubMed  Google Scholar 

  • Fernando D, Milagrosa S, Francisco C, Francisco M (2018) Biostimulant activity of Trichoderma saturnisporum in melon (Cucumis melo). HortScience 53(6):810–815

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Bonifacio A, Rodrigues AC, Araujo F, Stamford NP (2016) Beneficial microorganisms: Current challenge to increase crop performance. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for Sustainable Agriculture. Springer, New Delhi, pp 53–70

    Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58(9):2339–2358

    Article  CAS  PubMed  Google Scholar 

  • Ghorbanpour A, Salimi A, Ghanbary MAT, Pirdashti H, Dehestani A (2018) The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci Hortic 230:134–141

    Article  Google Scholar 

  • Gitelson AA, Merzlyak MN, Zur Y, Stark R, Gritz U (2001) Non-destructive and remote sensing techniques, for estimation of vegetation status. Proc Third Eur Confer Prec Agric 1:205–210

    Google Scholar 

  • Handa N, Kohli SK, Kaur R, Sharma A, Kumar V, Thukral AK, Arora S, Bhardwaj R (2018) Role of Compatible Solutes in Enhancing Antioxidative Defense in Plants Exposed to Metal Toxicity. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under Metal and Metalloid Stress: Responses, Tolerance and Remediation. Springer, Singapore, pp 207–228

    Chapter  Google Scholar 

  • Harman GE, Doni F, Khadka RB, Uphoff N (2019) Endophytic strains of Trichoderma increase plants’ photosynthetic capability. J Appl Microbiol 130:529–546

    Article  PubMed  Google Scholar 

  • Herrera-Téllez AA, Cruz-Olmedo AK, Plasencia J, Gavilanes-Ruíz M, Arce-Cervantes O, Hernández-León S, Saucedo-García M (2019) The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. Int J Mol Sci 20:1–13

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Circular n. 347. Agricultural Experiment Station, California

  • Jaiswal SK, Naamala J, Dakora FD (2018) Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biol Fertil Soils 54(3):309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R, Abd-Allah EF, Hashem A, Ahmad P (2019a) Plant growth promoting rhizobacteria induced Cd tolerance in Lycopersicon esculentum through altered antioxidative defense expression. Chemosphere 217:463–474

    Article  CAS  PubMed  Google Scholar 

  • Khanna K, Sharma A, Ohri P, Bhardwaj R, Abd-Allah EF, Hashem A, Ahmad P (2019b) Impact of plant growth promoting rhizobacteria in the orchestration of Lycopersicon esculentum Mill resistance to plant parasitic nematodes: a metabolomic approach to evaluate defense responses under field conditions. Biomolecules 9(11):676

    Article  CAS  PubMed Central  Google Scholar 

  • Khoshmanzar E, Aliasgharzad N, Neyshabouri MR, Khoshru B, Arzanlou M, Asgari-Lajayer B (2020) Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. Int J Environ Sci Technol 17(2):869–878

    Article  CAS  Google Scholar 

  • Kumar V, Khare T, Shaikh S, Wani SH (2018) Compatible solutes and abiotic stress tolerance in plants. In Ramakrishna A, Gill SS (Eds) Metabolic adaptations in plants during abiotic stress. pp. 213–220

  • Lichtenthaler H, Wellburm A (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591–592

    Article  Google Scholar 

  • Maldaner J, Steffen GPK, Saldanha CW, Steffen RB, Tabaldi LA, Missio EL, Morais RM, Flores R (2020) Combining tolerant species and microorganisms for phytoremediation in aluminium-contaminated areas. Int J Environ Sci 77(1):108–121

    CAS  Google Scholar 

  • Mansour MMF, Ali EF (2017) Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68

    Article  Google Scholar 

  • Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, Yadav M, Upadhyay RS (2019) Regulation of Lproline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5(12):e02952

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendes JBS, Costa Neto VP, Sousa CDA, Carvalho Filho MR, Rodrigues AC, Bonifacio A (2020) Trichoderma and bradyrhizobia act synergistically and enhance the growth rate, biomass and photosynthetic pigments of cowpea (Vigna unguiculata) grown in controlled conditions. Symbiosis 80(2):133–143

    Article  CAS  Google Scholar 

  • Muhammad N, Zvobgo G, Fu L, Lwalaba JLW, Zhang G (2019) Physiological mechanisms for antagonistic interaction of manganese and aluminum in barley. J Plant Nutr 42:466–476

    Article  CAS  Google Scholar 

  • Oliveira DF, Lopes LDS, Gomes-Filho E (2020) Metabolic changes associated with differential salt tolerance in sorghum genotypes. Planta 252(3):1–18

    Article  Google Scholar 

  • Oljira AM, Hussain T, Waghmode TR, Zhao H, Sun H, Liu X, Wang X, Liu B (2020) Trichoderma enhances net photosynthesis, water use efficiency, and growth of wheat (Triticum aestivum L.) under salt stress. Microorganisms 8(10):1565

    Article  CAS  PubMed Central  Google Scholar 

  • Pehlivan N, Yesilyurt AM, Durmus N, Karaoglu SA (2017) Trichoderma lixii ID11D seed biopriming mitigates dose dependent salt toxicity in maize. Acta Physiol Plant 39:1–12

    Article  CAS  Google Scholar 

  • Redda ET, Ma J, Mei J, Li M, Wu B, Jiang X (2018) Antagonistic potential of different isolates of Trichoderma against Fusarium oxysporum, Rhizoctonia solani, and Botrytis cinerea. Eur J Exp Biol 8(2):12

    Google Scholar 

  • Reis HB, Rodrigues AC, Chagas Junior AF, Bonifácio A, Santos GR (2019) Efficiency of application of Trichoderma on the physiological quality and health of cowpea seeds. Comun Sci 10(2):301–307

    Article  Google Scholar 

  • Santos JL, Ribeiro EA, Oliveira RS, Luz JHS, Nunes BHN, Oliveira HP, Sarmento RA, Silva RR, Chagas Junior AF (2021) Volatile organic compounds produced by Trichoderma sp. morphophysiologically altered maize growth at initial stages. Aust J Crop Sci 15(2):215–223

    Article  Google Scholar 

  • Sharma N, Khanna K, Manhas RK, Bhardwaj R, Ohri P, Alkahtani J, Alwahibi MS, Ahmad P (2020) Insights into the role of Streptomyces hydrogenans as the plant growth promoter, photosynthetic pigment enhancer and biocontrol agent against Meloidogyne incognita in Solanum lycopersicum seedlings. Plants 9(9):1109

    Article  CAS  PubMed Central  Google Scholar 

  • Silva LV, Oliveira SBR, Azevedo LA, Rodrigues AC, Bonifacio A (2019) Coinoculation with Bradyrhizobium and Trichoderma alleviates the effects of salt stress in cowpea. Rev Caatinga 32:336–344

    Article  Google Scholar 

  • Siqueira JA, Barros JAS, Dal-Bianco M, Martins SCV, Magalhães PC, Ribeiro DM, DaMatta FM, Araújo WL, Ribeiro C (2020) Metabolic and physiological adjustments of maize leaves in response to aluminum stress. Theor Exp Plant Physiol 32(2):133–145

    Article  CAS  Google Scholar 

  • Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A (2020) Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants 9(6):762

    Article  CAS  PubMed Central  Google Scholar 

  • Souri MK, Hatamian M (2019) Aminochelates in plant nutrition: a review. J Plant Nutr 42(1):67–78

    Article  CAS  Google Scholar 

  • Sousa A, AbdElgawad H, Fidalgo F, Teixeira J, Matos M, Hamed BA, Selim S, Hozzein WN, Beemster GTS, Asard H, Asard H (2020) Al exposure increases proline levels by different pathways in an Al-sensitive and an Al-tolerant rye genotype. Sci Rep 10(1):16401

    Article  PubMed  PubMed Central  Google Scholar 

  • Tandzi LN, Mutengwa C, Ngonkeu E, Gracen V (2018) Breeding maize for tolerance to acidic soils: A review. Agronomy 8:1–21

    Google Scholar 

  • Yan L, Riaz M, Liu Y, Zeng Y, Jiang C (2019) Aluminum toxicity could be mitigated with boron by altering the metabolic patterns of amino acids and carbohydrates rather than organic acids in trifoliate orange. Tree Physiol 39(9):1572–1582

    Article  PubMed  Google Scholar 

  • Yasmeen R, Siddiqui ZS (2018) Ameliorative effects of Trichoderma harzianum on monocot crops under hydroponic saline environment. Acta Physiol Plant 40(1):1–14

    Article  CAS  Google Scholar 

  • Yemm EW, Cocking EF (1955) The determination of amino acids with ninhydrin. Analyst 80(948):209–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq) and the National Council for the Improvement of Higher Education (CAPES for financial support.

Author information

Authors and Affiliations

Authors

Contributions

AB and FJRM conceived and designed the experiments. FJRM, ÁLOL, ISS, and VPCN developed methodologies. AB, FJRM, and VPCN analyzed the experimental data. AB and FJRM wrote the article. AB responsible for the funding acquisition.

Corresponding author

Correspondence to Aurenívia Bonifácio.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 307 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Rêgo Meneses, F.J., de Oliveira Lopes, Á.L., Setubal, I.S. et al. Inoculation of Trichoderma asperelloides ameliorates aluminum stress-induced damages by improving growth, photosynthetic pigments and organic solutes in maize. 3 Biotech 12, 246 (2022). https://doi.org/10.1007/s13205-022-03310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03310-3

Keywords

Navigation