Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001
Article
Google Scholar
Arnosti C, Ziervogel K, Yang T, Teske A (2016) Oil-derived marine aggregates—hot spots of polysaccharide degradation by specialized bacterial communities. Deep Res Part II Top Stud Oceanogr 129:179–186. https://doi.org/10.1016/j.dsr2.2014.12.008
CAS
Article
Google Scholar
Arulnayagam A, Park J (2019) Blue carbon stock of mangrove ecosystems. Int J Sci Res 8:1371–1375. https://doi.org/10.21275/ART20203497
Article
Google Scholar
Bathe S, Achouak W, Hartmann A et al (2006) Genetic and phenotypic microdiversity of Ochrobactrum spp. FEMS Microbiol Ecol 56:272–280. https://doi.org/10.1111/j.1574-6941.2005.00029.x
CAS
Article
PubMed
Google Scholar
Brito EMS, Guyoneaud RRRRR, Goñi-Urriza M et al (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 157:752–762. https://doi.org/10.1016/j.resmic.2006.03.005
CAS
Article
PubMed
Google Scholar
Camargo MG, Nardes E, Lana PC (2013) Efeitos de um derrame experimental de óleo bunker na sobrevivência e taxas de crescimento de plântulas de Laguncularia racemosa (Combretaceae). Biotemas 26:53–67. https://doi.org/10.5007/2175-7925.2013v26n1p53
Article
Google Scholar
Carmo FL, Santos HF, Martins EF et al (2011) Bacterial structure and characterization of plant growth promoting and oil degrading bacteria from the rhizospheres of mangrove plants. J Microbiol 49:535–543. https://doi.org/10.1007/s12275-011-0528-0
CAS
Article
PubMed
Google Scholar
Cheng H, Wang Y-S, Ye Z-H et al (2012) Influence of N deficiency and salinity on metal (Pb, Zn and Cu) accumulation and tolerance by Rhizophora stylosa in relation to root anatomy and permeability. Environ Pollut 164:110–117. https://doi.org/10.1016/j.envpol.2012.01.034
CAS
Article
PubMed
Google Scholar
Chequer L, Bitencourt J, Waite C et al (2017) Response of mangrove propagules to the presence of oil and hydrocarbon degrading bacteria during an experimental oil spill. Lat Am J Aquat Res 45:814–821. https://doi.org/10.3856/vol45-issue4-fulltext-17
Article
Google Scholar
Chindah AC, Braide SA, Amakiri JO, Onokurhefe J (2008) Effect of crude oil on the development of white mangrove seedlings (Avicennia germinans) in the Niger Delta, Nigeria. Estud Biol 30:181–194. https://doi.org/10.7213/reb.v30i70/72.22810
Article
Google Scholar
Chronopoulou PM, Fahy A, Coulon F et al (2013) Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing bacteria in mudflat mesocosms. Environ Microbiol 15:242–252. https://doi.org/10.1111/j.1462-2920.2012.02864.x
CAS
Article
PubMed
Google Scholar
Cole JR, Wang Q, Cardenas E et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. https://doi.org/10.1093/nar/gkn879
CAS
Article
PubMed
Google Scholar
Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024
CAS
Article
Google Scholar
Crapez MAC, Tosta ZT, Bispo MGS et al (1997) Biorremediação em sedimentos de praias arenosas utilizando Bacillus isolados de solo de floresta. Oecologia Bras 03:19–26. https://doi.org/10.4257/oeco.1997.0301.02
Article
Google Scholar
Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345. https://doi.org/10.1016/j.biortech.2006.05.032
CAS
Article
PubMed
Google Scholar
de Soyza AG (2002) Development of quantitative tools for improved environmental decision-making in arid environments. Environmetrics 13:523–533. https://doi.org/10.1002/env.528
Article
Google Scholar
Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol 8:1–28. https://doi.org/10.3389/fmicb.2017.00922
Article
Google Scholar
Decho AW, Herndl GJ (1995) Microbial activities and the transformation of organic-matter within mucilaginous material. Sci Total Environ 165:33–42. https://doi.org/10.1016/0048-9697(95)04541-8
CAS
Article
Google Scholar
Druschel GK, Kappler A (2015) Geomicrobiology and microbial geochemistry. Elements 11:389–394. https://doi.org/10.1002/2014EO100008
Article
Google Scholar
Duke NC (2016) Oil spill impacts on mangroves: recommendations for operational planning and action based on a global review. Mar Pollut Bull 109:700–715. https://doi.org/10.1016/j.marpolbul.2016.06.082
CAS
Article
PubMed
Google Scholar
Duke NC, Ellison JC, Burns KA (1998) Surveys of oil spill incidents affecting mangrove habitat in Australia: a preliminary assessment of incidents, impacts on mangroves, and recovery of deforested areas. APPEA J 38:646. https://doi.org/10.1071/AJ97041
CAS
Article
Google Scholar
EPA (1999) In-Use Marine Diesel Fuel (EPA420-R-99-027). Fairfax, Virgínia
Fenchel T, King GM, Blackburn H (2012) Bacterial biochemistry: the ecophysiology of mineral cycling, 3rd edn. Academic Press, San Diego
Google Scholar
Fernandes PL, Rodrigues EM, Paiva FR et al (2016) Biosurfactant, solvents and polymer production by Bacillus subtilis RI4914 and their application for enhanced oil recovery. Fuel 180:551–557. https://doi.org/10.1016/j.fuel.2016.04.080
CAS
Article
Google Scholar
Fontana LF, Da SFS, De FNG et al (2010) Superficial distribution of aromatic compounds and geomicrobiology of sediments from Suruí Mangrove, Guanabara Bay, RJ, Brazil. An Acad Bras Cienc 82:1013–1030. https://doi.org/10.1590/S0001-37652010000400022
Article
PubMed
Google Scholar
Galiulin RV, Bashkin VN, Galiulina RA (2012) Degradation of petroleum hydrocarbons in soil under the action of peat compost. Solid Fuel Chem 46:328–329. https://doi.org/10.3103/S0361521912050047
CAS
Article
Google Scholar
Getter CDC, Ballou TGT, Koons CB, Bruce Koons C (1985) Effects of dispersed oil on mangroves synthesis of a seven-year study. Mar Pollut Bull 16:318–324. https://doi.org/10.1016/0025-326X(85)90447-3
Article
Google Scholar
Ghazali FM, Rahman RNZA, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54:61–67. https://doi.org/10.1016/j.ibiod.2004.02.002
CAS
Article
Google Scholar
Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374. https://doi.org/10.1016/j.biotechadv.2010.02.001
CAS
Article
PubMed
Google Scholar
Grant DL, Clarke PJ, Allaway WG (1993) The response of grey mangrove (Avicennia marina (Forsk.) Vierh.) seedlings to spills of crude oil. J Exp Mar Bio Ecol 171:273–295. https://doi.org/10.1016/0022-0981(93)90009-D
Article
Google Scholar
Guzzella L, Roscioli C, Viganò L et al (2005) Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Environ Int 31:523–534. https://doi.org/10.1016/j.envint.2004.10.014
CAS
Article
PubMed
Google Scholar
Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182. https://doi.org/10.1038/nrmicro1348
CAS
Article
PubMed
Google Scholar
Hensel P, Proffitt EC, Delgado P et al (2014) Mangrove Ecology. In: Hoff R, Michel J (eds) Oil spills in mangroves: planning & response considerations. National Oceanic and Atmospheric Administration, USA, p 96
Google Scholar
Hoff R (2002) Oil spills in mangroves: planning & response considerations. National Oceanic and Atmospheric Administration, NOAA Ocean Service, Office of Response and Restoration
Houri-Davignon C, Relexans JC, Etcheber H (1989) Measurement of actual electron transport system (ETS) activity in marine sediments by incubation with INT. Environ Technol Lett 10:91–100. https://doi.org/10.1080/09593338909384722
CAS
Article
Google Scholar
Howard J, Sutton-Grier A, Herr D et al (2017) Clarifying the role of coastal and marine systems in climate mitigation. Front Ecol Environ. https://doi.org/10.1002/fee.1451
Article
Google Scholar
IARC (1983) Polynuclear aromatic compounds, Part 1, chemical, environmental and experimental data. IARC Monogr Eval Carcinog Risk Chem Hum 32:1–453
Google Scholar
Ijah UJ, Antai S (2003) Removal of Nigerian light crude oil in soil over a 12-month period. Int Biodeterior Biodegrad 51:93–99. https://doi.org/10.1016/S0964-8305(01)00131-7
CAS
Article
Google Scholar
Jha CK, Saraf M (2015) Plant growth promoting Rhizobacteria (PGPR): a review. J Agric Res Dev 5:108–119. https://doi.org/10.13140/RG.2.1.5171.2164
Article
Google Scholar
Kaczyńska G, Borowik A, Wyszkowska J (2015) Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water Air Soil Pollut. https://doi.org/10.1007/s11270-015-2642-9
Article
PubMed
PubMed Central
Google Scholar
Kepner RL, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603–615. https://doi.org/10.1128/mr.58.4.603-615.1994
CAS
Article
PubMed
PubMed Central
Google Scholar
Kostka JE, Prakash O, Overholt WA et al (2011) Hydrocarbon-degrading bacteria and the bacterial community response in gulf of mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974. https://doi.org/10.1128/AEM.05402-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Krepsky N, Da Silva F, Fontana L, Crapez M (2007) Alternative methodology for isolation of biosurfactant-producing bacteria. Braz J Biol 67:117–124. https://doi.org/10.1590/S1519-69842007000100016
CAS
Article
PubMed
Google Scholar
Kucharski J, Jastrzȩbska E (2005) Effects of heating oil on the count of microorganisms and physico-chemical properties of soil. Polish J Environ Stud 14:189–198
CAS
Google Scholar
Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175
Google Scholar
Leppard GG (1997) Colloidal organic fibrils of acid polysaccharides in surface waters: electron-optical characteristics, activities and chemical estimates of abundance. Colloids Surfaces A Physicochem Eng Asp 120:1–15. https://doi.org/10.1016/S0927-7757(96)03676-X
CAS
Article
Google Scholar
Lewis M, Pryor R, Wilking L (2011) Fate and effects of anthropogenic chemicals in mangrove ecosystems: a review. Environ Pollut 159:2328–2346. https://doi.org/10.1016/j.envpol.2011.04.027
CAS
Article
PubMed
Google Scholar
Li Y, Zheng L, Zhang Y et al (2019) Comparative metagenomics study reveals pollution induced changes of microbial genes in mangrove sediments. Nature 9:1–11. https://doi.org/10.1038/s41598-019-42260-4
CAS
Article
Google Scholar
Lipińska A, Kucharski J, Wyszkowska J (2014) The effect of polycyclic aromatic hydrocarbons on the structure of organotrophic bacteria and dehydrogenase activity in soil. Polycycl Aromat Compd 34:35–53. https://doi.org/10.1080/10406638.2013.844175
CAS
Article
Google Scholar
Luan TG, Yu KSH, Zhong Y et al (2006) Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere 65:2289–2296. https://doi.org/10.1016/j.chemosphere.2006.05.013
CAS
Article
PubMed
Google Scholar
Maciel-Souza MC, Macrae A, Volpon AGT et al (2006) Chemical and microbiological characterization of mangrove sediments after a large oil-spill in Guanabara Bay––RJ—Brazil. Braz J Microbiol 37:262–266. https://doi.org/10.1590/S1517-83822006000300013
CAS
Article
Google Scholar
Mangwani N, Kumari S, Das S (2015) Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6. Appl Microbiol Biotechnol 99:10283–10297. https://doi.org/10.1007/s00253-015-6868-7
CAS
Article
PubMed
Google Scholar
McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10. https://doi.org/10.1186/2046-9063-8-10
Article
PubMed
PubMed Central
Google Scholar
Moeskops B, Sukristiyonubowo BD et al (2010) Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl Soil Ecol 45:112–120. https://doi.org/10.1016/j.apsoil.2010.03.005
Article
Google Scholar
Moradi B, Zare Maivan H, Seyed Hashtroudi M et al (2021) Physiological responses and phytoremediation capability of Avicennia marina to oil contamination. Acta Physiol Plant 43:18. https://doi.org/10.1007/s11738-020-03177-y
CAS
Article
Google Scholar
Moreira ITA, Oliveira OMC, Triguis JA et al (2011) Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchem J 99:376–382. https://doi.org/10.1016/j.microc.2011.06.011
CAS
Article
Google Scholar
Moreira ITA, Oliveira OMC, Triguis JA et al (2013) Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPH’s) using Avicennia schaueriana. Mar Pollut Bull 67:130–136. https://doi.org/10.1016/j.marpolbul.2012.11.024
CAS
Article
PubMed
Google Scholar
Muratova A, Pozdnyakova N, Makarov O et al (2014) Degradation of phenanthrene by the rhizobacterium Ensifer meliloti. Biodegradation 25:787–795. https://doi.org/10.1007/s10532-014-9699-9
CAS
Article
PubMed
Google Scholar
Mürer EH, Levin J, Holme R (1975) Isolation and studies of the granules of the amebocytes of Limulus polyphemus, the horseshoe crab. J Cell Physiol 86:533–542. https://doi.org/10.1002/jcp.1040860310
Article
PubMed
Google Scholar
Naidoo G, Naidoo Y, Achar P (2010) Responses of the mangroves Avicennia marina and Bruguiera gymnorrhiza to oil contamination. Flora Morphol Distrib Funct Ecol Plants 205:357–362. https://doi.org/10.1016/j.flora.2009.12.033
Article
Google Scholar
Ngom A, Nakagawa Y, Sawada H et al (2004) A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J Gen Appl Microbiol 50:17–27. https://doi.org/10.2323/jgam.50.17
CAS
Article
PubMed
Google Scholar
NJDEP (2005) Field sampling procedures manual. NJDEP, New Jersey
Google Scholar
Platt TG, Fuqua C (2010) What’s in a name? The semantics of quorum sensing. Trends Microbiol 18:383–387. https://doi.org/10.1016/j.tim.2010.05.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Proffitt CE, Devlin DJ, Lindseyt M (1995) Effects of oil on mangrove seedlings grown under different environmental conditions. Mar Pollut Bull 30:788–793. https://doi.org/10.1016/0025-326X(95)00070-4
CAS
Article
Google Scholar
Quigg A, Passow U, Chin W-C et al (2016) The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol Oceanogr Lett 1:3–26. https://doi.org/10.1002/lol2.10030
Article
Google Scholar
R Development Core Team (2014) R: a language and environment for statistical computing.
Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01785
Article
PubMed
PubMed Central
Google Scholar
Rodrigues FDO, Lamparelli CC, De MDO (1999) Environmental impact in mangrove ecosystems: São Paulo, Brazil. In: Arancibia AY, Lara-Domínguez AL (eds) Ecosistemas de manglar en américa tropical. Silver Spring, Costa Rica, p 380
Google Scholar
Sampaio CJS, de Souza JRB, Damião AO et al (2019) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a diesel oil-contaminated mangrove by plant growth-promoting rhizobacteria. 3 Biotech 9:1–10. https://doi.org/10.1007/s13205-019-1686-8
CAS
Article
Google Scholar
Santos HF, Carmo FLFL, Paes JES et al (2011) Bioremediation of mangroves impacted by petroleum. Water Air Soil Pollut 216:329–350. https://doi.org/10.1007/s11270-010-0536-4
CAS
Article
Google Scholar
Sodré V, Caetano VS, Rocha RM et al (2013) Physiological aspects of mangrove (Laguncularia racemosa) grown in microcosms with oil-degrading bacteria and oil contaminated sediment. Environ Pollut 172:243–249. https://doi.org/10.1016/j.envpol.2012.09.003
CAS
Article
PubMed
Google Scholar
Song M-K, Song M, Choi H-S et al (2012) Identification of molecular signatures predicting the carcinogenicity of polycyclic aromatic hydrocarbons (PAHs). Toxicol Lett 212:18–28. https://doi.org/10.1016/j.toxlet.2012.04.013
CAS
Article
PubMed
Google Scholar
Stubberfield LCF, Shaw PJA (1990) A comparison of tetrazolium reduction and FDA hydrolysis with other measures of microbial activity. J Microbiol Methods 12:151–162. https://doi.org/10.1016/0167-7012(90)90026-3
CAS
Article
Google Scholar
Tam NFY, Wong YS (1998) Variations of soil nutrient and organic matter content in a subtropical mangrove ecosystem. Water Air Soil Pollut 103:245–261. https://doi.org/10.1023/A:1004925700931
CAS
Article
Google Scholar
Tam NFY, Wong YS (2008) Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons. Mar Pollut Bull 57:716–726. https://doi.org/10.1016/j.marpolbul.2008.02.029
CAS
Article
PubMed
Google Scholar
Tomlinson PB (1994) The botany of mangroves, 1st edn. University of Cambridge, Australia
Google Scholar
Touchette BW, Baca BJ, Stout DC (1992) Effects of an oil spill in a mangrove mitigation site. In: Ann. Conf. on Wetlands Restoration and Creation. 18th Ann. Conf. on Wetlands Restoration and Creation, Tampa, Fla., Tampa, Fla, pp 213–227
Verâne J, Santos NCP, Silva VL et al (2020) Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. Mar Pollut Bull 160:111687. https://doi.org/10.1016/j.marpolbul.2020.111687
CAS
Article
PubMed
Google Scholar
Verdugo P (2012) Marine microgels. Ann Rev Mar Sci 4:375–400. https://doi.org/10.1146/annurev-marine-120709-142759
Article
PubMed
Google Scholar
Vert M, Doi Y, Hellwich K et al (2012) Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84:377–410. https://doi.org/10.1351/PAC-REC-10-12-04
CAS
Article
Google Scholar
Waite CCC, Silva GOA, Bitencourt JAP et al (2020) Potential application of Pseudomonas stutzeri W228 for removal of copper and lead from marine environments. PLoS ONE 15:1–17. https://doi.org/10.1371/journal.pone.0240486
CAS
Article
Google Scholar
Wang Y, Fang L, Lin L et al (2014) Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. Chemosphere 99:152–159. https://doi.org/10.1016/j.chemosphere.2013.10.054
CAS
Article
PubMed
Google Scholar
Wyszkowska J, Kucharski J (2005) Correlation between the number of cultivatable microorganisms and soil contamination with diesel oil. Polish J Environ Stud 14:347–356
CAS
Google Scholar
Yadav AK, Manna S, Pandiyan K et al (2016) Isolation and characterization of biosurfactant producing Bacillus sp. from diesel fuel-contaminated site. Microbiology 85:56–62. https://doi.org/10.1134/S0026261716010161
CAS
Article
Google Scholar
Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. https://doi.org/10.1016/j.tplants.2008.10.004
CAS
Article
PubMed
Google Scholar
Ye Y, Tam NFY (2007) Effects of used lubricating oil on two mangroves Aegiceras corniculatum and Avicennia marina. J Environ Sci 19:1355–1360. https://doi.org/10.1016/S1001-0742(07)60221-6
CAS
Article
Google Scholar
Yenn R, Borah M, Boruah HPD et al (2014) Phytoremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation. Int J Phytoremediat 16:909–925. https://doi.org/10.1080/15226514.2013.810573
CAS
Article
Google Scholar
Zhang CG, Leung KK, Wong YS, Tam NFY (2007) Germination, growth and physiological responses of mangrove plant (Bruguiera gymnorrhiza) to lubricating oil pollution. Environ Exp Bot 60:127–136. https://doi.org/10.1016/j.envexpbot.2006.09.002
CAS
Article
Google Scholar
Ziervogel K, Arnosti C (2016) Enhanced protein and carbohydrate hydrolyses in plume-associated deepwaters initially sampled during the early stages of the Deepwater Horizon oil spill. Deep Res Part II Top Stud Oceanogr 129:368–373. https://doi.org/10.1016/j.dsr2.2013.09.003
CAS
Article
Google Scholar
Zuloaga O, Prieto A, Usobiaga A et al (2009) Polycyclic aromatic hydrocarbons in intertidal marine bivalves of sunderban mangrove Wetland, India: an approach to bioindicator species. Water Air Soil Pollut 201:305–318. https://doi.org/10.1007/s11270-008-9946-y
CAS
Article
Google Scholar