An R, Liu X, Wang R et al (2014) The over-expression of two transcription factors, ABS5/bHLH30 and ABS7/MYB101, leads to upwardly curly leaves. PLoS ONE 9:e107637
Article
Google Scholar
Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8. https://doi.org/10.1016/j.plaphy.2008.10.002
CAS
Article
PubMed
Google Scholar
Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38. https://doi.org/10.1111/j.1365-3040.2007.01727.x
CAS
Article
PubMed
Google Scholar
Belles-Boix E, Hamant O, Witiak SM et al (2006) KNAT6: an arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell 18:1900–1907. https://doi.org/10.1105/tpc.106.041988
CAS
Article
PubMed
PubMed Central
Google Scholar
Bishop GJ, Yokota T (2001) Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol 42:114–120. https://doi.org/10.1093/pcp/pce018
CAS
Article
PubMed
Google Scholar
Bonaventure G, Gfeller A, Proebsting WM et al (2007) A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant J 49:889–898. https://doi.org/10.1111/j.1365-313X.2006.03002.x
CAS
Article
PubMed
Google Scholar
Braybrook SA, Harada JJ (2008) LECs go crazy in embryo development. Trends Plant Sci 13:624–630. https://doi.org/10.1016/j.tplants.2008.09.008
CAS
Article
PubMed
Google Scholar
Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585. https://doi.org/10.1111/j.1365-313X.2004.02235.x
CAS
Article
PubMed
Google Scholar
Chen X, Liu J, Lin G et al (2013) Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Rep 32:1589–1599. https://doi.org/10.1007/s00299-013-1469-3
CAS
Article
PubMed
Google Scholar
Chen W-H, Li P-F, Chen M-K et al (2015) Forever Young Flower negatively regulates ethylene response DNA-binding factors by activating an ethylene-responsive factor to control arabidopsis floral organ senescence and abscission. Plant Physiol 168:1666–1683. https://doi.org/10.1104/pp.15.00433
CAS
Article
PubMed
PubMed Central
Google Scholar
Cifuentes-Esquivel N, Bou-Torrent J, Galstyan A et al (2013) The bHLH proteins BEE and BIM positively modulate the shade avoidance syndrome in Arabidopsis seedlings. Plant J 75:989–1002. https://doi.org/10.1111/tpj.12264
CAS
Article
PubMed
Google Scholar
Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381. https://doi.org/10.1146/annurev.arplant.48.1.355
CAS
Article
PubMed
Google Scholar
Ellis CM, Nagpal P, Young JC et al (2005) Auxin response factor1 and auxin response factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574. https://doi.org/10.1242/dev.02012
CAS
Article
PubMed
Google Scholar
Fang W, Wang Z, Cui R et al (2012) Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. Plant J 70:929–939. https://doi.org/10.1111/j.1365-313X.2012.04907.x
CAS
Article
PubMed
Google Scholar
Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17:1061–1066. https://doi.org/10.1016/j.cub.2007.05.049
CAS
Article
PubMed
Google Scholar
Garcia D, Saingery V, Chambrier P et al (2003) Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol 131:1661–1670. https://doi.org/10.1104/pp.102.018762
CAS
Article
PubMed
PubMed Central
Google Scholar
Ghosh SP (2001) World trade in litchi: past, present and future. In: Acta Horticulturae. International Society for Horticultural Science (ISHS), Leuven, pp 23–30
Google Scholar
Gilmour SJ, Sebolt AM, Salazar MP et al (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865. https://doi.org/10.1104/pp.124.4.1854
CAS
Article
PubMed
PubMed Central
Google Scholar
Goldberg RB, Barker SJ, Perez-Grau L (1989) Regulation of gene expression during plant embryogenesis. Cell 56:149–160. https://doi.org/10.1016/0092-8674(89)90888-X
CAS
Article
PubMed
Google Scholar
Goldberg RB, de Paiva G, Yadegari R (1994) Plant Embryogenesis: Zygote to Seed. Science (80-) 266:605–614. https://doi.org/10.1126/science.266.5185.605
CAS
Article
Google Scholar
Gray WM (2004) Hormonal regulation of plant growth and development. PLoS Biol 2:E311–E311. https://doi.org/10.1371/journal.pbio.0020311
CAS
Article
PubMed
PubMed Central
Google Scholar
Groszmann M, Paicu T, Alvarez JP et al (2011) SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Plant J 68:816–829. https://doi.org/10.1111/j.1365-313X.2011.04732.x
CAS
Article
PubMed
Google Scholar
Guo D, Qin G (2016) EXB1/WRKY71 transcription factor regulates both shoot branching and responses to abiotic stresses. Plant Signal Behav 11:e1150404. https://doi.org/10.1080/15592324.2016.1150404
CAS
Article
PubMed
PubMed Central
Google Scholar
Heisler MG, Atkinson A, Bylstra YH et al (2001) SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development 128:1089–1098
CAS
Article
Google Scholar
Huang F, Zhang R, Liu Y et al (2016) Dietary litchi pulp polysaccharides could enhance immunomodulatory and antioxidant effects in mice. Int J Biol Macromol 92:1067–1073. https://doi.org/10.1016/j.ijbiomac.2016.08.021
CAS
Article
PubMed
Google Scholar
Ibrahim SRM, Mohamed GA (2015) Litchi chinensis: medicinal uses, phytochemistry, and pharmacology. J Ethnopharmacol 174:492–513. https://doi.org/10.1016/j.jep.2015.08.054
CAS
Article
PubMed
Google Scholar
Jiang W-B, Lin W-H (2013) Brassinosteroid functions in Arabidopsis seed development. Plant Signal Behav 8:e25928. https://doi.org/10.4161/psb.25928
CAS
Article
PubMed
PubMed Central
Google Scholar
Jiang W-B, Huang H-Y, Hu Y-W et al (2013) Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol 162:1965–1977. https://doi.org/10.1104/pp.113.217703
CAS
Article
PubMed
PubMed Central
Google Scholar
Kemmerling B, Schwedt A, Rodriguez P et al (2007) The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol 17:1116–1122. https://doi.org/10.1016/j.cub.2007.05.046
CAS
Article
PubMed
Google Scholar
Kilari EK, Putta S (2017) Delayed progression of diabetic cataractogenesis and retinopathy by Litchi chinensis in STZ-induced diabetic rats. Cutan Ocul Toxicol 36:52–59. https://doi.org/10.3109/15569527.2016.1144610
CAS
Article
PubMed
Google Scholar
Knuesting J, Riondet C, Maria C et al (2015) Arabidopsis glutaredoxin S17 and its partner, the nuclear factor Y subunit C11/negative cofactor 2α, contribute to maintenance of the shoot apical meristem under long-day photoperiod. Plant Physiol 167:1643–1658. https://doi.org/10.1104/pp.15.00049
CAS
Article
PubMed
PubMed Central
Google Scholar
Koo YJ, Kim MA, Kim EH et al (2007) Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol Biol 64:1–15. https://doi.org/10.1007/s11103-006-9123-x
CAS
Article
PubMed
Google Scholar
Küfner I, Koch W (2008) Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane. BMC Res Notes 1:43. https://doi.org/10.1186/1756-0500-1-43
CAS
Article
PubMed
PubMed Central
Google Scholar
Lemoine R, La Camera S, Atanassova R et al (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272
CAS
Article
Google Scholar
Li J, Wen J, Lease KA et al (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222. https://doi.org/10.1016/S0092-8674(02)00812-7
CAS
Article
PubMed
Google Scholar
Liang Y-S (2012) Types of aborted seed and quality evaluation of ‘Wuheli’ litchi (Litchi Chinensis Sonn.). Afr J Agric Res 7:2910–2917. https://doi.org/10.5897/ajar11.1968
Article
Google Scholar
Ma W, Kong Q, Arondel V et al (2013) WRINKLED1, a ubiquitous regulator in oil accumulating tissues from arabidopsis embryos to oil palm mesocarp. PLoS ONE 8:e68887
CAS
Article
Google Scholar
Meinke D, Muralla R, Sweeney C, Dickerman A (2008) Identifying essential genes in Arabidopsis thaliana. Trends Plant Sci 13:483–491. https://doi.org/10.1016/j.tplants.2008.06.003
CAS
Article
PubMed
Google Scholar
Menzel C, Waite G (2005) Litchi and longan botany, production, and uses. CABI Pub, Cambridge
Book
Google Scholar
Ohto M, Fischer RL, Goldberg RB et al (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci USA 102:3123–3128. https://doi.org/10.1073/pnas.0409858102
CAS
Article
PubMed
PubMed Central
Google Scholar
Pathak AK, Singh SP, Tuli R (2014) Amplified fragment length polymorphism fingerprinting to identify genetic relatedness among lychee cultivars and markers associated with small-seeded cultivars. J Am Soc Hortic Sci 139:657–668
CAS
Article
Google Scholar
Pathak AK, Singh SP, Gupta Y et al (2016) Transcriptional changes during ovule development in two genotypes of litchi (Litchi chinensis Sonn.) with contrast in seed size. Sci Rep 6:36304. https://doi.org/10.1038/srep36304
CAS
Article
PubMed
PubMed Central
Google Scholar
Pei H, Ma N, Tian J et al (2013) An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiol 163:775–791. https://doi.org/10.1104/pp.113.223388
CAS
Article
PubMed
PubMed Central
Google Scholar
Pignocchi C, Minns GE, Nesi N et al (2009) ENDOSPERM DEFECTIVE1 is a novel microtubule-associated protein essential for seed development in arabidopsis. Plant Cell 21:90–105. https://doi.org/10.1105/tpc.108.061812
CAS
Article
PubMed
PubMed Central
Google Scholar
Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338. https://doi.org/10.1093/jxb/err031
CAS
Article
PubMed
Google Scholar
Schröder F, Lisso J, Lange P, Müssig C (2009) The extracellular EXO protein mediates cell expansion in Arabidopsis leaves. BMC Plant Biol 9:20. https://doi.org/10.1186/1471-2229-9-20
CAS
Article
PubMed
PubMed Central
Google Scholar
Seo PJ, Park J-M, Kang SK et al (2011) An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233:189–200. https://doi.org/10.1007/s00425-010-1293-8
CAS
Article
PubMed
Google Scholar
Septembre-Malaterre A, Stanislas G, Douraguia E, Gonthier M-P (2016) Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chem 212:225–233. https://doi.org/10.1016/j.foodchem.2016.05.147
CAS
Article
PubMed
Google Scholar
Sharma P, Mantri SS (2014) WImpiBLAST: web interface for mpiBLAST to help biologists perform large-scale annotation using high performance computing. PLoS ONE 9:e101144
Article
Google Scholar
Sun K, Hunt K, Hauser BA (2004) Ovule abortion in Arabidopsis triggered by stress. Plant Physiol 135:2358–2367. https://doi.org/10.1104/pp.104.043091
CAS
Article
PubMed
PubMed Central
Google Scholar
Uematsu K, Suzuki N, Iwamae T et al (2012) Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J Exp Bot 63:3001–3009. https://doi.org/10.1093/jxb/ers004
CAS
Article
PubMed
Google Scholar
Varoquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better: new approaches for seedless fruit production. Trends Biotechnol 18:233–242. https://doi.org/10.1016/S0167-7799(00)01448-7
CAS
Article
PubMed
Google Scholar
Wang J, Yan D-W, Yuan T-T et al (2013) A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level. Plant Mol Biol 82:71–83. https://doi.org/10.1007/s11103-013-0039-y
CAS
Article
PubMed
Google Scholar
Wang H, Wang H, Shao H, Tang X (2016) Recent Advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67. https://doi.org/10.3389/fpls.2016.00067
Article
PubMed
PubMed Central
Google Scholar
Wasternack C, Forner S, Strnad M, Hause B (2013) Jasmonates in flower and seed development. Biochimie 95:79–85. https://doi.org/10.1016/j.biochi.2012.06.005
CAS
Article
PubMed
Google Scholar
Wu X, Chory J, Weigel D (2007) Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development. Dev Biol 309:306–316. https://doi.org/10.1016/j.ydbio.2007.07.019
CAS
Article
PubMed
PubMed Central
Google Scholar
Xiang X, Ou LX, Qiu YP et al (2001) EMBRYO ABORTION AND POLLEN PARENT EFFECTS IN NUOMICI™ AND˜GUIWEI™ LITCHI. In: Acta Horticulturae. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 257–260
Google Scholar
Xu D, Li J, Gangappa SN et al (2014) Convergence of Light and ABA Signaling on the ABI5 Promoter. PLOS Genet 10:e1004197
Article
Google Scholar
Yang C-J, Zhang C, Lu Y-N et al (2011) The mechanisms of Brassinosteroids’ action: from signal transduction to plant development. Mol Plant 4:588–600. https://doi.org/10.1093/mp/ssr020
CAS
Article
PubMed
Google Scholar
Yang J, Duan G, Li C et al (2019) The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front Plant Sci 10:1349
Article
Google Scholar