Skip to main content

Advertisement

Log in

Gordonia sp. BSTG01 isolated from Hevea brasiliensis plantation efficiently degrades polyisoprene (rubber)

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Polyisoprene is the principal constituent of rubber latex which has been estimated globally as one of the major solid wastes. Bacterial bioremediation of this solid waste remains a major point of interest for scientists. This study reports a Gram-positive, non-motile, non-spore-forming actinomycete Gordonia sp. BSTG01, isolated from the bark of Hevea brasiliensis of a rubber plantation garden can considerably degrade natural rubber (NR) and synthetic polyisoprene rubber (SR). Scanning electron microscopy showed adhesive colonization of strain BSTG01 on both natural and synthetic rubber surface, conflating into the rubber and forming a biofilm. Rubber-dependent growth of the strain was examined by the decrease of rubber mass and increase of its total protein content in a time-dependent manner. Degradation was also verified by Schiff’s reagent which confirms the appearance of aldehydes in the culture media. Fourier transform infrared spectroscopy including the attenuated total reflectance with the NR and SR pieces overgrown by the isolate revealed variations of the overall chemicals arising on the polyisoprene backbone due to the degradation of rubber by the strain BSTG01. Isolate BSTG01 (MTCC 13159) is a strain of Gordonia and this is the first strain isolated from unexplored rubber plantation area with considerable rubber degradation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anand AAP, Vennison SJ, Sankar SG, Prabhu DIG, Vasan PT, Raghuraman T, Geoffrey CJ, Vendan SE (2009) Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J Insect Sci 10:1–20

    Article  Google Scholar 

  • Arenskötter M, Baumeister D, Berekaa MM, Pötter G, Kroppenstedt RM, Linos A, Steinbüchel A (2001) Taxonomic characterization of two rubber degrading bacteria belonging to the species Gordonia polyisoprenivorans and analysis of hyper variable regions of 16S rDNA sequences. FEMS Microbiol Lett 205(2):277–282. https://doi.org/10.1111/j.1574-6968.2001.tb10961.x

    Article  PubMed  Google Scholar 

  • Arenskötter M, Bröker D, Steinbüchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70:3195–3204

    Article  Google Scholar 

  • Borel M, Kergomard A, Renard MF (1982) Degradation of natural rubber by Fungi imperfecti. Agric Biol Chem 46:877–8781

    CAS  Google Scholar 

  • Bosco F, Antonioli D, Casale A, Gianotti V, Mollea C, Laus M, Malucelli G (2018) Biodegradation of unvulcanized natural rubber by microorganisms isolated from soil and rubber surface: A preliminary study. Bioremediation J 22:43–52

    Article  CAS  Google Scholar 

  • Braga SP, Dos Santos AP, Paganini T, Barbosa D, Epamino G, Morais C, Martins LF, Silva AM, Setubal JC, Vallim MA, Pascon RC (2019) First report of cis-1,4-polyisoprene degradation by Gordonia paraffinivorans. Braz J Microbiol 50(4):1051–1062. https://doi.org/10.1007/s42770-019-00143-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredberg K, Christiansson M, Stenberg B, Holst O (2000) Biotechnological processes for recycling of rubber products. In: Koyama T, Steinbüchel A (eds) 2001 Biopolymers, vol 2. Wiley, GmbH, Weinheim, pp 361–375

    Google Scholar 

  • Bröker D, Arenskötter M, Legatzki A, Nies DH, Steinbüchel A (2004) Characterization of the 101-kilobase-pair megaplasmid pKB1, isolated from the rubber-degrading bacterium Gordonia westfalica Kb1. J Bacteriol 186(1):212–225. https://doi.org/10.1128/JB.186.1.212-225.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bröker D, Dietz D, Arenskötter M, Steinbüchel A (2008) The genomes of the non-clearing-zone-forming and natural-rubber- degrading species Gordonia polyisoprenivorans and Gordonia westfalica harbor genes expressing Lcp activity in Streptomyces strains. Appl Environ Microbiol 74(8):2288–2297. https://doi.org/10.1128/AEM.02145-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chia KH, Nanthini J, Thottathil GP, Najimudin N, Haris MRHM, Sudesh K (2014) Identification of new rubber-degrading bacterial strains from aged latex. Pol Degrad Stab 109:354–361. https://doi.org/10.1016/j.polymdegradstab.2014.07.027

    Article  CAS  Google Scholar 

  • Christinasson M, Stenberg B, Wallenberg LR, Holst O (2000) Toxic additives—A problem for microbial waste rubber desulphurization. Res Environ Biotechnol 3(1):11–21

    Google Scholar 

  • Danna CS, Cavalcante DGSM, Gomes AS, Kerche-Silva L, Yoshihara E, Osorio-Roman IO, Salmazo LO, Rodriguez-Perez MA, Aroca RF, Job AE (2016) Silver nanoparticles embedded in natural rubber films: synthesis, characterization, and evaluation of in vitro toxicity. J Nanomater 2016:2368630. https://doi.org/10.1155/2016/2368630

    Article  CAS  Google Scholar 

  • de Menezes CB, Afonso RS, de Souza WR, Parma M, de Melo IS, Zucchi TD, Garboggini FF (2016) Gordonia didemni sp. Nov. an actinomycete isolated from the marine ascidium Didemnum sp. Anton Van Leeuwen 109(2):297–303

    Article  Google Scholar 

  • De Vries O (1928) Zersetzung von Kautschuk-Kohlenwasserstoff durch Pilze. Zentralbl Bakteriol Parasitenkd Infekt 74:22–24

    Google Scholar 

  • de Witt J, Oetermann S, Parise M, Parise D, Baumbach J, Steinbüchel A (2020) Global regulator of rubber degradation in Gordonia polyisoprenivorans VH2: identification and involvement in the regulation network. Appl Environ Microbiol 86(15):e00774-e820. https://doi.org/10.1128/AEM.00774-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding X, Yu Y, Chen M et al (2017) Bacteremia due to Gordonia polyisoprenivorans: case report and review of literature. BMC Infect Dis 17:419. https://doi.org/10.1186/s12879-017-2523-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsentein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17:368–376

    Article  Google Scholar 

  • Fusconi R, Godinho MJL, Hernandez ILC, Bossolan NRS (2006) Gordonia polyisoprenivorans from groundwater contaminated with landfill leachate in a subtropical area: characterization of the isolate and exopolysaccharide production. Braz J Microbiol 37(2):168–174

    Article  Google Scholar 

  • Gallert C (2000) Degradation of latex and of natural rubber by Streptomyces strain La 7. Syst Appl Microbiol 23(3):433–441. https://doi.org/10.1016/S0723-2020(00)80075-2

    Article  CAS  PubMed  Google Scholar 

  • Hamid ME, Musa MT, El-Sanousi SM, El Hassan MM, Joseph M, Goodfellow M (2014) Characterization of Gordonia sinesedis isolated from a Zebu Cow suffering from lymphadenitis. Microbiol Res J Int 5(3):216–226

    Google Scholar 

  • Hankin L, Zucker M, Sands DC (1971) Improved solid medium for the detection and enumeration of pectolytic bacteria. Appl Microbiol 22:205–209

    Article  CAS  Google Scholar 

  • Hapuarachchi SNS, Kariyapper SR, Gunawardana MBDMD, Egodage S, Ariyadasa TU (2016) Biodegradation of natural rubber latex by a novel bacterial species isolated from soil. 2016 Moratuwa engineering research conference (MERCon)

  • Heisey RM, Papadatos S (1995) Isolation of microorganisms able to metabolize purified natural rubber. Appl Environ Microbiol 61(8):3092–3097

    Article  CAS  Google Scholar 

  • Hiessl S, Schuldes J, Thürmer A, Halbsguth T, Bröker D, Angelov A, Liebl W, Daniel R, Steinbüchel A (2012) Involvement of two latex-clearing proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans strain VH2. Appl Environ Microbiol 78(8):2874–2887. https://doi.org/10.1128/AEM.07969-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim EMA, El-ameen TM (2013) Degradation of natural and synthetic rubber by Gordonia alkanivorans strain E1. J Agric Chem Biotechnol 4(1):17–28

    Google Scholar 

  • Ibrahim A, Daik R, Abdullah I (2014) Functionalization of liquid natural rubber via oxidative degradation of natural rubber. Polymers 6:2928–2941

    Article  Google Scholar 

  • Imai S, Ichikawa K, Muramatsu Y, Kasai D, Masai E, Fukuda M (2011) Isolation and characterization of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rubber and synthetic poly (cis-1,4-isoprene). Enzym Microb Technol 49:526–531

    Article  CAS  Google Scholar 

  • Jendrossek D, Tomasi G, Kroppenstedt RM (1997) Bacterial degradation of natural rubber: a privilege of actinomycetes? FEMS Microbiol Lett 150(2):179–188

    Article  CAS  Google Scholar 

  • Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Kumar D, Kumar L, Nagar S, Raina C, Parshad R, Gupta VK (2012) Screening, isolation and production of lipase/esterase producing Bacillus sp. Strain DVL2 and its potential evaluation in esterification and resolution reactions. Arch Appl Sci Res 4:1763–1770

    CAS  Google Scholar 

  • Kwiatkowska D, Zyska BJ, Zankowicz LP (1980) Microbiological deterioration of natural rubber sheet by soil microorganisms. Biodeterioration 4:135–141

    Google Scholar 

  • Linh DV, Huong NL, Tabata M, Imai S, Iijima S, Kasai D, Anh TK, Fukuda M (2017) Characterization and functional expression of a rubber degradation gene of a Nocardia degrader from a rubber-processing factory. J Biosci Bioeng 123(4):412–418. https://doi.org/10.1016/j.jbiosc.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  • Linos A, Steinbüchel A (1998) Microbial degradation of natural and synthetic rubbers by novel bacteria belonging to the genus Gordonia. Kautsch Gummi Kunstst 51:496–499

    CAS  Google Scholar 

  • Linos A, Steinbüchel A, Spröer C, Kroppenstedt RM (1999) Gordonia polyisoprenivorans sp. Nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int J Syst Bacteriol 49(4):1785–1791

    Article  CAS  Google Scholar 

  • Linos A, Berekaa MM, Reichelt R, Keller U, Schmitt J, Flemming HC, Kroppenstedt RM, Steinbuchel A (2000) Biodegradation of poly(cis-1,4-polyisoprene) rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis. Appl Environ Microbiol 66(4):1639–1645. https://doi.org/10.1128/aem.66.4.1639-1645.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linos A, Berekaa MM, Steinbüchel A, Kim KK, Sproer C, Kroppenstedt RM (2002) Gordonia sp. Nov., a novel rubber-degrading actinomycete. Int J Syst Evol 52(4):1133–1139. https://doi.org/10.1099/00207713-52-4-1133

    Article  CAS  Google Scholar 

  • Luo Q, Hiessl S, Poehlein A, Daniel R, Steinbuchel A (2014) Insights into the microbial degradation of rubber and gutta-percha by analysis of the complete genome of Nocardia nova SH22a. Appl Environ Microbiol 80(13):3895–3907

    Article  Google Scholar 

  • Maiti PK, Mandal S (2020) Lentzea indica sp. Nov., a novel actinobacteria isolated from Indian Himalayan-soil. Anton Van Leeuwen. https://doi.org/10.1007/s10482-020-01449-8

    Article  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Monthly Rubber Statistical News (2019) Statistics and Planning Department Rubber Board, Kottayam, 686 002. Kerala, India. Vol. 77. No. 12. http://www.anrpc.org/html/news-secretariat-details.aspx?ID=9&PID=39&NID=2471

  • Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotech 53:355–365

    Article  CAS  Google Scholar 

  • Natural Rubber Trends and Statistics (2020) Association of Natural Rubber Producing Countries. http://www.anrpc.org/html/news-secretariat-details.aspx?ID=9&PID=39&NID=4668

  • Nawong C, Umsakul K, Sermwittayawong N (2018) Rubber gloves biodegradation by a consortium, mixed culture and pure culture isolated from soil samples. Braz J Microbiol 49:481–488

    Article  CAS  Google Scholar 

  • Nei M, Kumar S (2002) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Onyeagoro GN, Ohaeri E, Timothy UJ (2012) Studies on microbial degradation of natural rubber using dilute solution viscosity measurement and weight loss techniques. Int J Basic Appl Sci 1(2):448–460

    Article  Google Scholar 

  • Park SJ, Lee IS, Chang YK, Lee SY (2003) Desulfurization of dibenzothiophene and diesel oil by metabolically engineered Escherichia coli. J Microbiol Biotechnol 13:578–583

    CAS  Google Scholar 

  • Ramanan P, Deziel PJ, Wengenack NL (2013) Gordonia bacteremia. J Clin Microbiol 51(10):3443–3447. https://doi.org/10.1128/JCM.01449-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Rong X, Huang Y (2010) Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA-DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 60(Pt 3):696–703. https://doi.org/10.1099/ijs.0.012419-0

    Article  CAS  PubMed  Google Scholar 

  • Rose K, Steinbuchel A (2002) Construction and intergeneric conjugative transfer of a pSG5-based cosmid vector from Escherichia coli to the polyisoprene rubber degrading strain Micromonospora aurantiaca W2b. FEMS Microbiol Lett 211:129–132

    Article  CAS  Google Scholar 

  • Rose K, Steinbuchel A (2005) Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl Environ Microb 71(6):2803–2812. https://doi.org/10.1128/aem.71.6.2803-2812.2005

    Article  CAS  Google Scholar 

  • Sangkanu S, Suriyachadkun C, Phongpaichit S (2019) Gordonia sediminis sp. nov., an actinomycete isolated from mangrove sediment. Int J Syst Evol Microbiol 69(6):1814–1820

    Article  CAS  Google Scholar 

  • Sarkar B, Mandal S (2020) Microbial degradation of natural and synthetic rubbers. In: Shah M (ed) Microbial bioremediation and biodegradation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1812-6_21

    Chapter  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark

    Google Scholar 

  • Schade AL (1937) Observations on a Monascus isolated from rubber. Mycologia 29:295–302

    Article  Google Scholar 

  • Shah AA, Hasan F, Shah Z, Kanwal N (2013) Biodegradation of natural and synthetic rubbers: a review. Int Biodeterior Biodegrad 83:145–157

    Article  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces sp. Int J Syst Evol Microbiol 16:313–340

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  • Tsuchii A, Suzuki T, Takeda K (1985) Microbial degradation of natural rubber vulcanizates. Appl Environ Microbiol 50:965–970

    Article  CAS  Google Scholar 

  • Watcharakul S, Umsakul K, Hodgson B, Chumeka W, Tanrattanakul V (2012) Biodegradation of a blended starch/natural rubber foam biopolymer and rubber gloves by Streptomyces coelicolor CH13. Electron J Biotechnol. https://doi.org/10.2225/vol15-issue1-fulltext-10

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackins MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Xie Y, Zhou S, Xu Y et al (2020) Gordonia mangrove sp. Nov., a novel actinobacterium isolated from mangrove soil in Hainan. Int J Syst Evol Microbiol 70(8):4537–4543. https://doi.org/10.1099/ijsem.0.004310

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhendu Mandal.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, B., Mandal, S. Gordonia sp. BSTG01 isolated from Hevea brasiliensis plantation efficiently degrades polyisoprene (rubber). 3 Biotech 11, 508 (2021). https://doi.org/10.1007/s13205-021-03063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-03063-5

Keywords

Navigation