Skip to main content
Log in

Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The development of artificial biocrust using cyanobacterium Phormidium tenue has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specific genes and their protein products in response to 500 mM NaCl in P. tenue. The results show that 500 mM NaCl induces the expression of genes encoding glycerol-3-phosphate dehydrogenase (glpD) as a Flavoprotein, ribosomal protein S12 methylthiotransferase (rimO), and a hypothetical protein (sll0939). The constructed co-expression network revealed a group of abiotic stress-responsive genes. Using the Basic Local Alignment Search Tool (BLAST), the homologous proteins of rimO, glpD, and sll0939 were identified in the P. tenue genome. Encoded proteins of glpD, rimO, and DUF1622 genes, respectively, contain (DAO and DAO C), (UPF0004, Radical SAM and TRAM 2), and (DUF1622) domains. The predicted ligand included 22B and MG for DUF1622, FS5 for rimO, and FAD for glpD protein. There was no direct disruption in ligand-binding sites of these proteins by Na+, Cl, or NaCl. The growth rate, photosynthetic pigment, and morphology of P. tenue were investigated, and the result showed an acceptable tolerance rate of this microorganism under salt stress. The quantitative real-time polymerase chain reaction (qRT-PCR) results revealed the up-regulation of glpD, rimO, and DUF1622 genes under salt stress. This is the first report on computational and experimental analyses of the glpD, rimO, and DUF1622 genes in P. tenue under salt stress to the best of our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

taken from three independent biological replicates. Different lower case letters above columns indicate significant differences at the (P < 0.05) and show significant differences compared with control

Similar content being viewed by others

References

  • Allakhverdiev SI, Murata N (2008) Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res 98:529–539

    CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allocco DJ, Kohane IS, Butte AJ (2004) Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinform 5:1–10

    Google Scholar 

  • Allu AD, Soja AM, Wu A, Szymanski J, Balazadeh S (2014) Salt stress and senescence: identification of cross-talk regulatory components. J Exp Bot 65:3993–4008

    PubMed  PubMed Central  Google Scholar 

  • Antoninka A, Bowker MA, Reed SC, Doherty K (2016) Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function. Restor Ecol 24:324–335

    Google Scholar 

  • Arakawa T, Timasheff S (1991) The interactions of proteins with salts, amino acids, and sugars at high concentration. In: Gilles R, Hoffmann EK, Bolis L (eds) Advances in Comparative and Environmental Physiology. Springer, Berlin, pp 226–245

    Google Scholar 

  • Arora K, Kumar P, Bose D, Li X, Kulshrestha S (2021) Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 11:1–24

    Google Scholar 

  • Basak N, Krishnan V, Pandey V, Punjabi M, Hada A, Marathe A, Jolly M, Palaka BK, Ampasala DR, Sachdev A (2020) Expression profiling and in silico homology modeling of Inositol penta kis phosphate 2-kinase, a potential candidate gene for low phytate trait in soybean. 3 Biotech 10:1–21

    Google Scholar 

  • Belnap J, Weber B, Büdel B (2016) Biological soil crusts as an organizing principle in drylands. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts: an organizing principle in drylands. Springer, Cham, pp 3–13

    Google Scholar 

  • Bhardwaj AK, Shukla A, Mishra RK, Singh S, Mishra V, Uttam K, Singh MP, Sharma S, Gopal R (2017) Power and time dependent microwave assisted fabrication of silver nanoparticles decorated cotton (SNDC) fibers for bacterial decontamination. Front Microbiol 8:330

    PubMed  PubMed Central  Google Scholar 

  • Bhardwaj AK, Shukla A, Maurya S, Singh SC, Uttam KN, Sundaram S, Singh MP, Gopal R (2018) Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: photon energy as key for size and distribution control. J Photochem Photobiol B 188:42–49

    CAS  PubMed  Google Scholar 

  • Bhardwaj AK, Sundaram S, Yadav KK, Srivastav AL (2021) An overview of silver nano-particles as promising materials for water disinfection. Environ Technol Innov. https://doi.org/10.1016/j.eti.2021.101721

    Article  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowker MA, Reed SC, Maestre FT, Eldridge DJ (2018) Biocrusts: the living skin of the earth. Springer

    Google Scholar 

  • Bu C, Wang C, Yang Y, Zhang L, Bowker MA (2017) Physiological responses of artificial moss biocrusts to dehydration-rehydration process and heat stress on the Loess Plateau, China. J Arid Land 9:419–431

    Google Scholar 

  • Büdel B, Dulić T, Darienko T, Rybalka N, Friedl T (2016) Cyanobacteria and algae of biological soil crusts. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts: an organizing principle in drylands. Springer, Cham, pp 55–80

    Google Scholar 

  • Carpentier A-S, Torrésani B, Grossmann A, Hénaut A (2005) Decoding the nucleoid organisation of Bacillus subtilis and Escherichia coli through gene expression data. BMC Genomics 6:1–11

    Google Scholar 

  • Chamizo S, Mugnai G, Rossi F, Certini G, De Philippis R (2018) Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Environ Sci 6:49

    Google Scholar 

  • Coleman RA, Lee DP (2004) Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res 43:134–176

    CAS  PubMed  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium U (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:1–14

    Google Scholar 

  • Cruz de Carvalho R, dos Santos P, Branquinho C (2018) Production of moss-dominated biocrusts to enhance the stability and function of the margins of artificial water bodies. Restor Ecol 26:419–421

    Google Scholar 

  • de Souza Silva CMM, Fay EF (2012) Effect of salinity on soil microorganisms. Soil Health Land Use Manage 10:177–198

    Google Scholar 

  • Dickson DJ, Luterra MD, Ely RL (2012) Transcriptomic responses of Synechocystis sp. PCC 6803 encapsulated in silica gel. Appl Microbiol Biotechnol 96:183–196

    CAS  PubMed  Google Scholar 

  • Doi Y (2019) Glycerol metabolism and its regulation in lactic acid bacteria. Appl Microbiol Biotechnol 103:5079–5093

    CAS  PubMed  Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. Defin Soil Qual Sustain Environ 35:1–21

    Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863–14868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eramian D, Eswar N, Shen MY, Sali A (2008) How well can the accuracy of comparative protein structure models be predicted? Protein Sci 17:1881–1893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eungrasamee K, Incharoensakdi A, Lindblad P, Jantaro S (2020) Synechocystis sp. PCC 6803 overexpressing genes involved in CBB cycle and free fatty acid cycling enhances the significant levels of intracellular lipids and secreted free fatty acids. Sci Rep 10:1–13

    Google Scholar 

  • Fageria N, Baligar V (2008) Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv Agron 99:345–399

    CAS  Google Scholar 

  • Fasani E, Manara A, Martini F, Furini A, DalCorso G (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41:1201–1232

    CAS  PubMed  Google Scholar 

  • Forouhar F, Arragain S, Atta M, Gambarelli S, Mouesca J-M, Hussain M, Xiao R, Kieffer-Jaquinod S, Seetharaman J, Acton TB (2013) Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases. Nat Chem Biol 9:333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georg J, Rosana ARR, Chamot D, Migur A, Hess WR, Owttrim GW (2019) Inactivation of the RNA helicase CrhR impacts a specific subset of the transcriptome in the cyanobacterium Synechocystis sp. PCC 6803. RNA Biol 16:1205–1214

    PubMed  PubMed Central  Google Scholar 

  • Gião MS, Keevil CW (2014) Listeria monocytogenes can form biofilms in tap water and enter into the viable but non-cultivable state. Microb Ecol 67:603–611

    PubMed  Google Scholar 

  • Goyal D, Yadav A, Prasad M, Singh TB, Shrivastav P, Ali A, Dantu PK, Mishra S (2020) Effect of heavy metals on plant growth: an overview. In: Naeem M, Ansari AA, Gill SS (eds) Contaminants in Agriculture. Springer, Cham, pp 79–101

    Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    CAS  PubMed  Google Scholar 

  • Hernandez-Prieto MA, Futschik ME (2012) CyanoEXpress: a web database for exploration and visualisation of the integrated transcriptome of cyanobacterium Synechocystis sp PCC6803. Bioinformation 8:634

    PubMed  PubMed Central  Google Scholar 

  • Hindré T, Knibbe C, Beslon G, Schneider D (2012) New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat Rev Microbiol 10:352–365

    PubMed  Google Scholar 

  • Hug JJ, Krug D, Müller R (2020) Bacteria as genetically programmable producers of bioactive natural products. Nat Rev Chem 4:172–193

    CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    CAS  PubMed  Google Scholar 

  • Ishida TA, Nara K, Ma S, Takano T, Liu S (2009) Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China. Mycorrhiza 19:329–335

    PubMed  Google Scholar 

  • Jarrett JT (2015) The biosynthesis of thiol-and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes. J Biol Chem 290:3972–3979

    CAS  PubMed  Google Scholar 

  • Jiang L, Pei H, Hu W, Ji Y, Han L, Ma G (2015) The feasibility of using complex wastewater from a monosodium glutamate factory to cultivate Spirulina subsalsa and accumulate biochemical composition. Biores Technol 180:304–310

    CAS  Google Scholar 

  • Jugder BE, Ertan H, Wong YK, Braidy N, Manefield M, Marquis CP, Lee M (2016) Genomic, transcriptomic and proteomic analyses of Dehalobacter UNSWDHB in response to chloroform. Environ Microbiol Rep 8:814–824

    PubMed  Google Scholar 

  • Kakeh J, Gorji M, Mohammadi MH, Asadi H, Khormali F, Sohrabi M, Cerdà A (2020) Biological soil crusts determine soil properties and salt dynamics under arid climatic condition in Qara Qir. Science of The Total Environment, Iran, p 139168

    Google Scholar 

  • Kakeh J, Gorji M, Mohammadi MH, Asadi H, Khormali F, Sohrabi M (2021) Effect of biocrusts on profile distribution of soil water content and salinity at different stages of evaporation. J Arid Environ 191:104514

    Google Scholar 

  • Kamonchanock E, Aran I, Lindblad P, Saowarath J (2020) Synechocystis sp. PCC 6803 overexpressing genes involved in CBB cycle and free fatty acid cycling enhances the significant levels of intracellular lipids and secreted free fatty acids. Sci Rep. https://doi.org/10.1038/s41598-020-61100-4

    Article  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290:339–348

    CAS  PubMed  Google Scholar 

  • Khalid E, Babiker E, Tinay AE (2003) Solubility and functional properties of sesame seed proteins as influenced by pH and/or salt concentration. Food Chem 82:361–366

    CAS  Google Scholar 

  • Kharwar S, Bhattacharjee S, Mishra AK (2021) Bioinformatics analysis of enzymes involved in cysteine biosynthesis: first evidence for the formation of cysteine synthase complex in cyanobacteria. 3 Biotech 11:1–15

    Google Scholar 

  • Khator K, Shekhawat G (2020) Nitric oxide mitigates salt-induced oxidative stress in Brassica juncea seedlings by regulating ROS metabolism and antioxidant defense system. 3 Biotech 10:1–12

    Google Scholar 

  • Khodadadi F, Tohidfar M, Vahdati K, Dandekar AM, Leslie CA (2020) Functional analysis of walnut polyphenol oxidase gene (JrPPO1) in transgenic tobacco plants and PPO induction in response to walnut bacterial blight. Plant Pathol 69:756–764

    CAS  Google Scholar 

  • Kirsch F, Klähn S, Hagemann M (2019) Salt-regulated accumulation of the compatible solutes sucrose and glucosylglycerol in cyanobacteria and its biotechnological potential. Front Microbiol 10:2139

    PubMed  PubMed Central  Google Scholar 

  • Klähn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13:551–562

    PubMed  Google Scholar 

  • Lan C-Y, Lin K-H, Chen C-L, Huang W-D, Chen C-C (2020) Comparisons of chlorophyll fluorescence and physiological characteristics of wheat seedlings influenced by iso-osmotic stresses from polyethylene glycol and sodium chloride. Agronomy 10:325

    CAS  Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40

    CAS  PubMed  Google Scholar 

  • Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33:W89–W93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lázaro R, Cantón Y, Solé-Benet A, Bevan J, Alexander R, Sancho L, Puigdefábregas J (2008) The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernas badlands (SE Spain) and its landscape effects. Geomorphology 102:252–266

    Google Scholar 

  • Liang Y, Li D, Chen Y, Cheng J, Zhao G, Fahima T, Yan J (2020) Selenium mitigates salt-induced oxidative stress in durum wheat (Triticum durum Desf.) seedlings by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. 3 Biotech 10:1–14

    Google Scholar 

  • Liang Z, Zhi H, Fang Z, Zhang P (2021) Genetic engineering of yeast, filamentous fungi and bacteria for terpene production and applications in food industry. Food Res Int 147:110487

    CAS  PubMed  Google Scholar 

  • Los DA, Suzuki I, Zinchenko VV, Murata N (2008) Stress responses in Synechocystis: regulated genes and regulatory systems. Caister Academic Press, Norfolk, pp 117–157

    Google Scholar 

  • Lu Y, Cheng L (2021) Computational analysis of LexA regulons in Proteus species. 3 Biotech 11:1–15

    Google Scholar 

  • Lu CH, Yu CS, Lin YF, Chen JY. Predicting flavin and nicotinamide adenine dinucleotide-binding sites in proteins using the fragment transformation method. Biomed Res Int. 2015; 2015:402536

    PubMed  PubMed Central  Google Scholar 

  • Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268

    CAS  PubMed  Google Scholar 

  • Lynn TM, Zhran M, Wang LF, Ge T, Yu SS, Kyaw EP, Latt ZK, Htwe TM (2021) Effect of land use on soil properties, microbial abundance and diversity of four different crop lands in central Myanmar. 3 Biotech 11:1–15

    Google Scholar 

  • Macindoe G, Mavridis L, Venkatraman V, Devignes M-D, Ritchie DW (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38:W445–W449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maestre FT, Sole R, Singh BK (2017) Microbial biotechnology as a tool to restore degraded drylands. Microb Biotechnol 10:1250–1253

    PubMed  PubMed Central  Google Scholar 

  • Mahdavi S, Razeghi J, Pazhouhandeh M, Movafeghi A, Kosari-Nasab M, Kianianmomeni A (2020) Characterization of two predicted DASH-related proteins from the green alga Volvox carteri provides new insights into their light-mediated transcript regulation and DNA repair activity. Algal Res 52:102116

    Google Scholar 

  • Trisilowati, Mallet DG. In silico experimental modeling of cancer treatment. ISRN Oncol. 2012;2012:828701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathpal P, Kumar U, Kumar A, Kumar S, Malik S, Kumar N, Dhaliwal H, Kumar S (2018) Identification, expression analysis, and molecular modeling of Iron-deficiency-specific clone 3 (Ids3)-like gene in hexaploid wheat. 3 Biotech 8:1–11

    Google Scholar 

  • Mironov KS, Sinetova MA, Shumskaya M, Los DA (2019) Universal molecular triggers of stress responses in Cyanobacterium Synechocystis. Life 9:67

    CAS  PubMed Central  Google Scholar 

  • Mugnai G, Rossi F, Felde VJMNL, Colesie C, Büdel B, Peth S, Kaplan A, De Philippis R (2018) Development of the polysaccharidic matrix in biocrusts induced by a cyanobacterium inoculated in sand microcosms. Biol Fertil Soils 54:27–40

    Google Scholar 

  • Mukherjee A, Bhowmick S, Yadav S, Rashid MM, Chouhan GK, Vaishya JK, Verma JP (2021) Re-vitalizing of endophytic microbes for soil health management and plant protection. 3 Biotech 11:1–17

    Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica (BBA) Acta Bioenergetics 1767:414–421

    CAS  Google Scholar 

  • Nagarajan S, Nagarajan S (2009) Abiotic tolerance and crop improvement. In: Pareek A, Sopory SK, Bohnert HJ (eds) Abiotic stress adaptation in plants. Springer, Dordrecht, pp 1–11

    Google Scholar 

  • Namwong S, Hiraga K, Takada K, Tsunemi M, Tanasupawat S, Oda K (2006) A halophilic serine proteinase from Halobacillus sp. SR5-3 isolated from fish sauce: purification and characterization. Biosci Biotechnol Biochem 70:1395–1401

    CAS  PubMed  Google Scholar 

  • Naraian R (2019) Mycodegradation of Lignocelluloses. Springer

    Google Scholar 

  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9:34

    Google Scholar 

  • Obalum S, Chibuike G, Peth S, Ouyang Y (2017) Soil organic matter as sole indicator of soil degradation. Environ Monit Assess 189:176

    CAS  PubMed  Google Scholar 

  • Oshone R, Ngom M, Chu F, Mansour S, Sy MO, Champion A, Tisa LS (2017) Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees. BMC Genomics 18:1–21

    Google Scholar 

  • Osman KT (2018) Saline and sodic soils. In: Osman KT (ed) Management of soil problems. Springer, Cham, pp 255–298

    Google Scholar 

  • Ozturk S, Aslim B (2010) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res 17:595–602

    CAS  Google Scholar 

  • Parmar N, Singh KH, Sharma D, Singh L, Kumar P, Nanjundan J, Khan YJ, Chauhan DK, Thakur AK (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7:1–35

    Google Scholar 

  • Pei H, Jiang L, Hou Q, Yu Z (2017) Toward facilitating microalgae cope with effluent from anaerobic digestion of kitchen waste: the art of agricultural phytohormones. Biotechnol Biofuels 10:1–18

    Google Scholar 

  • Phatak SS, Stephan CC, Cavasotto CN (2009) High-throughput and in silico screenings in drug discovery. Expert Opin Drug Discov 4:947–959

    CAS  PubMed  Google Scholar 

  • Punjabi M, Bharadvaja N, Sachdev A, Krishnan V (2018) Molecular characterization, modeling, and docking analysis of late phytic acid biosynthesis pathway gene, inositol polyphosphate 6-/3-/5-kinase, a potential candidate for developing low phytate crops. 3 Biotech 8:1–20

    Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2001) Use of saline–sodic waters through phytoremediation of calcareous saline–sodic soils. Agric Water Manag 50:197–210

    Google Scholar 

  • Reed CJ, Lewis H, Trejo E, Winston V, Evilia C (2013) Protein adaptations in archaeal extremophiles. Archaea. https://doi.org/10.1155/2013/373275

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezaei QBF, Solouki A, Tohidfar M, Zare Mehrjerdi M, Izadi-Darbandi A, Vahdati K (2020) Agrobacterium-mediated transformation of Persian walnut using BADH gene for salt and drought tolerance. J Horticult Sci Biotechnol. https://doi.org/10.1080/14620316.2020.1812446

    Article  Google Scholar 

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47–e47

    PubMed  PubMed Central  Google Scholar 

  • Rocha F, Esteban Lucas-Borja M, Pereira P, Muñoz-Rojas M (2020) Cyanobacteria as a nature-based biotechnological tool for restoring salt-affected soils. Agronomy 10:1321

    CAS  Google Scholar 

  • Roncero-Ramos B, Román J, Gómez-Serrano C, Cantón Y, Acién F (2019) Production of a biocrust-cyanobacteria strain (Nostoc commune) for large-scale restoration of dryland soils. J Appl Phycol 31:2217–2230

    Google Scholar 

  • Rychlik W (2007) OLIGO 7 primer analysis software. PCR Prim Des. https://doi.org/10.1007/978-1-59745-528-2_2

    Article  Google Scholar 

  • Sahoo S, Mahapatra SR, Das N, Parida BK, Rath S, Misra N, Suar M (2020) Functional elucidation of hypothetical proteins associated with lipid accumulation: Prioritizing genetic engineering targets for improved algal biofuel production. Algal Res 47:101887

    Google Scholar 

  • Schrödinger L, DeLano W (2020) PyMOL. Retrieved from http://www.pymol.org/pymol

  • Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Shrivastava AK (2017) In silico characterization and transcriptomic analysis of nif family genes from Anabaena sp. PCC7120. Cell Biol Toxicol 33:467–482

    CAS  PubMed  Google Scholar 

  • Smith P, House JI, Bustamante M, Sobocká J, Harper R, Pan G, West PC, Clark JM, Adhya T, Rumpel C (2016) Global change pressures on soils from land use and management. Glob Change Biol 22:1008–1028

    Google Scholar 

  • Sommer V, Karsten U, Glaser K (2020) Halophilic algal communities in biological soil crusts isolated from potash tailings pile areas. Front Ecol Evol 8:46

    Google Scholar 

  • Steele DJ, Franklin DJ, Underwood GJ (2014) Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms. Biofouling 30:987–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tonk L, Bosch K, Visser PM, Huisman J (2007) Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquat Microb Ecol 46:117–123

    Google Scholar 

  • Uchiyama J, Asakura R, Kimura M, Moriyama A, Tahara H, Kobayashi Y, Kubo Y, Yoshihara T, Ohta H (2012) Slr0967 and Sll0939 induced by the SphR response regulator in Synechocystis sp PCC 6803 are essential for growth under acid stress conditions. Biochimica et Biophysica Acta (BBA) Bioenergetics 1817:1270–1276

    CAS  Google Scholar 

  • Uchiyama J, Asakura R, Moriyama A, Kubo Y, Shibata Y, Yoshino Y, Tahara H, Matsuhashi A, Sato S, Nakamura Y (2014) Sll0939 is induced by Slr0967 in the cyanobacterium Synechocystis sp. PCC6803 and is essential for growth under various stress conditions. Plant Physiol Biochem 81:36–43

    CAS  PubMed  Google Scholar 

  • Vonshak A, Guy R, Guy M (1988) The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch Microbiol 150:417–420

    Google Scholar 

  • Wan X-F, VerBerkmoes NC, McCue LA, Stanek D, Connelly H, Hauser LJ, Wu L, Liu X, Yan T, Leaphart A (2004) Transcriptomic and proteomic characterization of the Fur modulon in the metal-reducing bacterium Shewanella oneidensis. J Bacteriol 186:8385–8400

    CAS  PubMed  PubMed Central  Google Scholar 

  • West NE (1990) Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Advances in ecological research. Elsevier, pp 179–223

    Google Scholar 

  • Wu Y, Rao B, Wu P, Liu Y, Li G, Li D (2013) Development of artificially induced biological soil crusts in fields and their effects on top soil. Plant Soil 370 (1–2):115–124

    CAS  Google Scholar 

  • Xin Z, Yong S, Yang L, Rong-Liang J, Xin-Rong L (2015) Osmotic adjustment of soil biocrust mosses in response to desiccation stress. Pedosphere 25:459–467

    Google Scholar 

  • Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M (2020) Effect of Abiotic Stress on Crops, Sustainable Crop Production. IntechOpen

    Google Scholar 

  • Yamazaki K, Ishimori M, Kajiya-Kanegae H, Takanashi H, Fujimoto M, Yoneda J-I, Yano K, Koshiba T, Tanaka R, Iwata H (2020) Effect of salt tolerance on biomass production in a large population of sorghum accessions. Breed Sci 70:167–175

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integr Plant Biol 60:796–804

    CAS  PubMed  Google Scholar 

  • Yang J, Roy A, Zhang Y (2012) BioLiP: a semi-manually curated database for biologically relevant ligand–protein interactions. Nucleic Acids Res 41:D1096–D1103

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Roy A, Zhang Y (2013) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D (2020) Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci 117:1496–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh JI, Chinte U, Du S (2008) Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism. Proc Natl Acad Sci 105:3280–3285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Li X, Wang F, Zhao X, Gao Y, Zhao C, He L, Li Z, Xu J (2018) Glycerol-3-phosphate dehydrogenase (GPDH) gene family in Zea mays L: Identification, subcellular localization, and transcriptional responses to abiotic stresses. PloS one 13:e0200357

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Tohidfar.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 762 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbazi, M., Tohidfar, M. & Azimzadeh Irani, M. Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis. 3 Biotech 11, 503 (2021). https://doi.org/10.1007/s13205-021-03050-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-03050-w

Keywords

Navigation