Skip to main content
Log in

Trends in biological data integration for the selection of enzymes and transcription factors related to cellulose and hemicellulose degradation in fungi

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Fungi are key players in biotechnological applications. Although several studies focusing on fungal diversity and genetics have been performed, many details of fungal biology remain unknown, including how cellulolytic enzymes are modulated within these organisms to allow changes in main plant cell wall compounds, cellulose and hemicellulose, and subsequent biomass conversion. With the advent and consolidation of DNA/RNA sequencing technology, different types of information can be generated at the genomic, structural and functional levels, including the gene expression profiles and regulatory mechanisms of these organisms, during degradation-induced conditions. This increase in data generation made rapid computational development necessary to deal with the large amounts of data generated. In this context, the origination of bioinformatics, a hybrid science integrating biological data with various techniques for information storage, distribution and analysis, was a fundamental step toward the current state-of-the-art in the postgenomic era. The possibility of integrating biological big data has facilitated exciting discoveries, including identifying novel mechanisms and more efficient enzymes, increasing yields, reducing costs and expanding opportunities in the bioprocess field. In this review, we summarize the current status and trends of the integration of different types of biological data through bioinformatics approaches for biological data analysis and enzyme selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

Not applicable as this is a review article that does not present any new data.

References

  • Abrashev R, Krumova E, Petrova P, Eneva R, Kostadinova N, Miteva-Staleva J, Engibarov S, Stoyancheva G, Gocheva Y, Kolyovska V (2021) Distribution of a novel enzyme of sialidase family among native filamentous fungi. Fungal Biol 125(5):412–425

    CAS  PubMed  Google Scholar 

  • Aderem A (2005) Systems biology: its practice and challenges. Cell 121(4):511–513

    CAS  PubMed  Google Scholar 

  • Akao T, Sano M, Yamada O, Akeno T, Fujii K, Goto K, Ohashi-Kunihiro S, Takase K, Yasukawa-Watanabe M, Yamaguchi K (2007) Analysis of expressed sequence tags from the fungus Aspergillus oryzae cultured under different conditions. DNA Res 14(2):47–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akcapinar GB, Sezerman OU (2016) Systems biological applications for fungal gene expression. In: Gene expression systems in fungi: advancements and applications. Springer, pp 385–393

  • Alberti F, Kaleem S, Weaver JA (2020) Recent developments of tools for genome and metabolome studies in basidiomycete fungi and their application to natural product research. Biol Open 9:12

    Google Scholar 

  • Almeida DA, Horta MAC, Ferreira Filho JA, Murad NF, de Souza AP (2021) The synergistic actions of hydrolytic genes reveal the mechanism of Trichoderma harzianum for cellulose degradation. J Biotechnol 334:1–10

    CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  • Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q (2020) Opportunities and challenges in long-read sequencing data analysis. Genome Biol 21(1):1–16

    Google Scholar 

  • Ambardar S, Gupta R, Trakroo D, Lal R, Vakhlu J (2016) High throughput sequencing: an overview of sequencing chemistry. Indian J Microbiol 56(4):394–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anasonye F, Winquist E, Kluczek-Turpeinen B, Räsänen M, Salonen K, Steffen KT, Tuomela M (2014) Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil. Chemosphere 110:85–90. https://doi.org/10.1016/j.chemosphere.2014.03.079

    Article  CAS  PubMed  Google Scholar 

  • Antonieto ACC, Nogueira KMV, de Paula RG, Nora LC, Cassiano MHA, Guazzaroni M-E, Almeida F, da Silva TA, Ries LNA, de Assis LJ, Goldman GH, Silva RN, Silva-Rocha R (2019) A novel Cys2His2 zinc finger homolog of AZF1 modulates holocellulase expression in Trichoderma reesei. mSystems 4(4):e00161-00119. https://doi.org/10.1128/mSystems.00161-19

    Article  Google Scholar 

  • Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnol 37(4):420–423

    Google Scholar 

  • Armstrong J, Fiddes IT, Diekhans M, Paten B (2019) Whole-genome alignment and comparative annotation. Annu Rev Animal Biosci 7:41–64

    CAS  Google Scholar 

  • Arntzen MØ, Bengtsson O, Várnai A, Delogu F, Mathiesen G, Eijsink VG (2020) Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Sci Rep 10(1):1–17

    Google Scholar 

  • Aro N, Saloheimo A, Ilmén M, Penttilä M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276(26):24309–24314. https://doi.org/10.1074/jbc.M003624200

    Article  CAS  PubMed  Google Scholar 

  • Aro N, Ilmén M, Saloheimo A, Penttilä M (2003) ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 69(1):56. https://doi.org/10.1128/AEM.69.1.56-65.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barabási A-L (2013) Network science. Philos Trans R Soc Math Phys Eng Sci 371(1987):20120375

    Google Scholar 

  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M (2012) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41(D1):D991–D995

    PubMed  PubMed Central  Google Scholar 

  • Barrett K, Jensen K, Meyer AS, Frisvad JC, Lange L (2020) Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: example Aspergillus and Penicillium. Sci Rep 10(1):1–12

    Google Scholar 

  • Basenko EY, Pulman JA, Shanmugasundram A, Harb OS, Crouch K, Starns D, Warrenfeltz S, Aurrecoechea C, Stoeckert CJ, Kissinger JC (2018) FungiDB: an integrated bioinformatic resource for fungi and oomycetes. J Fungi 4(1):39

    Google Scholar 

  • Batista TM, Hilario HO, de Brito GAM, Moreira RG, Furtado C, de Menezes GCA, Rosa CA, Rosa LH, Franco GR (2020) Whole-genome sequencing of the endemic Antarctic fungus Antarctomyces pellizariae reveals an ice-binding protein, a scarce set of secondary metabolites gene clusters and provides insights on Thelebolales phylogeny. Genomics 112(5):2915–2921

    CAS  PubMed  Google Scholar 

  • Benabda O, M’hir S, Kasmi M, Mnif W, Hamdi M (2019) Optimization of protease and amylase production by Rhizopus oryzae cultivated on bread waste using solid-state fermentation. J Chem 2019:3738181. https://doi.org/10.1155/2019/3738181

    Article  CAS  Google Scholar 

  • Berini F, Casciello C, Marcone GL, Marinelli F (2017) Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett 364(21):fnx211

    Google Scholar 

  • Bohra V, Dafale NA, Purohit HJ (2018) Paenibacillus polymyxa ND25: candidate genome for lignocellulosic biomass utilization. 3 Biotech 8(5):1–7

    Google Scholar 

  • Borin GP, Sanchez CC, de Santana ES, Zanini GK, Dos Santos RAC, de Oliveira PA, de Souza AT, Dal RMMTS, Riaño-Pachón DM, Goldman GH (2017) Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics 18(1):1–21

    Google Scholar 

  • Borin GP, Carazzolle MF, Dos Santos RAC, Riaño-Pachón DM, Oliveira JVdC (2018) Gene co-expression network reveals potential new genes related to sugarcane bagasse degradation in Trichoderma reesei RUT-30. Front Bioeng Biotechnol 6:151

    PubMed  PubMed Central  Google Scholar 

  • Bork P (2000) Powers and pitfalls in sequence analysis: the 70% hurdle. Genome Res 10(4):398–400

    CAS  PubMed  Google Scholar 

  • Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34(5):525–527

    CAS  PubMed  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64(3):573–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burks DJ, Azad RK (2016) Identification and network-enabled characterization of auxin response factor genes in Medicago truncatula. Front Plant Sci 7:1857

    PubMed  PubMed Central  Google Scholar 

  • Bushnell B (2014) BBMap: a fast, accurate, splice-aware aligner. In: Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States)

  • Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Alvarado AS, Yandell M (2008) MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18(1):188–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(Suppl 1):D233–D238

    CAS  PubMed  Google Scholar 

  • Cao Y, Zheng F, Wang L, Zhao G, Chen G, Zhang W, Liu W (2017) Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei. Mol Microbiol 105(1):65–83. https://doi.org/10.1111/mmi.13685

    Article  CAS  PubMed  Google Scholar 

  • Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J (2005) ACT: the Artemis comparison tool. Bioinformatics 21(16):3422–3423

    CAS  PubMed  Google Scholar 

  • Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 42(D1):D459–D471

    CAS  PubMed  Google Scholar 

  • Chambergo FS, Bonaccorsi ED, Ferreira AJ, Ramos AS, Junior JRF, Farah JPS, El-Dorry H, Abrahão-Neto J (2002) Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277(16):13983–13988

    CAS  PubMed  Google Scholar 

  • Chen Q, Zobel J, Verspoor K (2017) Duplicates, redundancies and inconsistencies in the primary nucleotide databases: a descriptive study. Database 2017:baw163

    PubMed Central  Google Scholar 

  • Chen Q, Britto R, Erill I, Jeffery CJ, Liberzon A, Magrane M, Onami J-i, Robinson-Rechavi M, Sponarova J, Zobel J (2020) Quality matters: biocuration experts on the impact of duplication and other data quality issues in biological databases. Genomics Proteomics Bioinform 18(2):91

    Google Scholar 

  • Cheng J-T, Cao F, Chen X-A, Li Y-Q, Mao X-M (2020) Genomic and transcriptomic survey of an endophytic fungus Calcarisporium arbuscula NRRL 3705 and potential overview of its secondary metabolites. BMC Genomics 21(1):1–13

    Google Scholar 

  • Corchete LA, Rojas EA, Alonso-López D, De Las RJ, Gutiérrez NC, Burguillo FJ (2020) Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Sci Rep 10(1):19737. https://doi.org/10.1038/s41598-020-76881-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-Silva J, Domingues D, Lopes FM (2017) RNA-Seq differential expression analysis: an extended review and a software tool. PLoS ONE 12(12):e0190152

    PubMed  PubMed Central  Google Scholar 

  • Crucello A, Sforça DA, Horta MAC, dos Santos CA, Viana AJC, Beloti LL, de Toledo MAS, Vincentz M, Kuroshu RM, de Souza AP (2015) Analysis of genomic regions of Trichoderma harzianum IOC-3844 related to biomass degradation. PLoS ONE 10(4):e0122122

    PubMed  PubMed Central  Google Scholar 

  • de Gouvêa PF, Bernardi AV, Gerolamo LE, de Souza SE, Riaño-Pachón DM, Uyemura SA, Dinamarco TM (2018) Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse. BMC Genomics 19(1):1–18

    Google Scholar 

  • de Paula RG, Antoniêto ACC, Ribeiro LFC, Carraro CB, Nogueira KMV, Lopes DCB, Silva AC, Zerbini MT, Pedersoli WR, Costa MdN, Silva RN (2018) New genomic approaches to enhance biomass degradation by the industrial fungus Trichoderma reesei. Int J Genomics 2018:1974151. https://doi.org/10.1155/2018/1974151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MHS, de Vries RP, de Castro Oliveira JV, Goldman GH (2011) Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol Biofuels 4(1):1–17

    Google Scholar 

  • Derntl C, Rassinger A, Srebotnik E, Mach RL, Mach-Aigner AR (2015) Xpp1 regulates the expression of xylanases, but not of cellulases in Trichoderma reesei. Biotechnol Biofuels 8(1):112. https://doi.org/10.1186/s13068-015-0298-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Dilokpimol A, Mäkelä MR, Cerullo G, Zhou M, Varriale S, Gidijala L, Brás JL, Jütten P, Piechot A, Verhaert R (2018) Fungal glucuronoyl esterases: genome mining based enzyme discovery and biochemical characterization. New Biotechnol 40:282–287

    CAS  Google Scholar 

  • Ding L, Rath E, Bai Y (2017) Comparison of alternative splicing junction detection tools using RNASeq data. Curr Genomics 18(3):268–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diniz W, Canduri F (2017) Bioinformatics: an overview and its applications. Genet Mol Res 16(1):17

    Google Scholar 

  • DiTursi MK, Kwon S-J, Reeder PJ, Dordick JS (2006) Bioinformatics-driven, rational engineering of protein thermostability. Protein Eng Des Sel 19(11):517–524

    CAS  PubMed  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    CAS  PubMed  Google Scholar 

  • dos Santos CL, Pedersoli WR, Antoniêto ACC, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM, Rossi A, Brown NA, Goldman GH, Faça VM (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels 7(1):1–18

    Google Scholar 

  • Druzhinina IS, Kubicek CP (2017) Genetic engineering of Trichoderma reesei cellulases and their production. Microb Biotechnol 10(6):1485–1499. https://doi.org/10.1111/1751-7915.12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison CE, Kowbel D, Glass NL, Taylor JW, Brem RB (2014) Discovering functions of unannotated genes from a transcriptome survey of wild fungal isolates. Mbio 5:2

    Google Scholar 

  • Faksri K, Tan JH, Chaiprasert A, Teo Y-Y, Ong RT-H (2016) Bioinformatics tools and databases for whole genome sequence analysis of Mycobacterium tuberculosis. Infect Genet Evol 45:359–368

    CAS  PubMed  Google Scholar 

  • Fasim A, More VS, More SS (2021) Large-scale production of enzymes for biotechnology uses. Curr Opin Biotechnol 69:68–76

    CAS  PubMed  Google Scholar 

  • Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4(4):e1000046

    PubMed  PubMed Central  Google Scholar 

  • Ferreira Filho JA, Horta MAC, Beloti LL, Dos Santos CA, de Souza AP (2017) Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry. BMC Genomics 18(1):1–12

    Google Scholar 

  • Ferreira Filho JA, Horta MAC, Dos Santos CA, Almeida DA, Murad NF, Mendes JS, Sforça DA, Silva CBC, Crucello A, de Souza AP (2020) Integrative genomic analysis of the bioprospection of regulators and accessory enzymes associated with cellulose degradation in a filamentous fungus (Trichoderma harzianum). BMC Genomics 21(1):1–14

    Google Scholar 

  • Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9(1):22–34

    CAS  PubMed  Google Scholar 

  • Florindo RN, Souza VP, Mutti HS, Camilo C, Manzine LR, Marana SR, Polikarpov I, Nascimento AS (2018) Structural insights into β-glucosidase transglycosylation based on biochemical, structural and computational analysis of two GH1 enzymes from Trichoderma harzianum. New Biotechnol 40:218–227

    CAS  Google Scholar 

  • Furukawa T, Shida Y, Kitagami N, Mori K, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y (2009) Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol 46(8):564–574. https://doi.org/10.1016/j.fgb.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma L-J, Smirnov S, Purcell S (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422(6934):859–868

    CAS  PubMed  Google Scholar 

  • Geniza M, Jaiswal P (2017) Tools for building de novo transcriptome assembly. Curr Plant Biol 11:41–45

    Google Scholar 

  • Gerlt JA (2017) Genomic enzymology: web tools for leveraging protein family sequence–function space and genome context to discover novel functions. Biochemistry 56(33):4293–4308

    CAS  PubMed  Google Scholar 

  • Giani AM, Gallo GR, Gianfranceschi L, Formenti G (2020) Long walk to genomics: history and current approaches to genome sequencing and assembly. Comput Struct Biotechnol J 18:9–19

    CAS  PubMed  Google Scholar 

  • Glass NL, Schmoll M, Cate JH, Coradetti S (2013) Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol 67:477–498

    CAS  PubMed  Google Scholar 

  • Gujar VV, Fuke P, Khardenavis AA, Purohit HJ (2018) Draft genome sequence of Penicillium chrysogenum strain HKF2, a fungus with potential for production of prebiotic synthesizing enzymes. 3 Biotech 8(2):1–5

    Google Scholar 

  • Gurjar MS, Aggarwal R, Jogawat A, Kulshreshtha D, Sharma S, Solanke AU, Dubey H, Jain RK (2019) De novo genome sequencing and secretome analysis of Tilletia indica inciting Karnal bunt of wheat provides pathogenesis-related genes. 3 Biotech 9(6):1–11

    Google Scholar 

  • Guzmán-Chávez F, Zwahlen RD, Bovenberg RA, Driessen AJ (2018) Engineering of the filamentous fungus Penicillium chrysogenum as cell factory for natural products. Front Microbiol 9:2768

    PubMed  PubMed Central  Google Scholar 

  • Horta MAC, Vicentini R, da Silva DP, Laborda P, Crucello A, Freitas S, Kuroshu RM, Polikarpov I, da Cruz Pradella JG, Souza AP (2014) Transcriptome profile of Trichoderma harzianum IOC-3844 induced by sugarcane bagasse. PLoS ONE 9(2):e88689

    PubMed  PubMed Central  Google Scholar 

  • Horta MAC, Ferreira Filho JA, Murad NF, de Oliveira SE, Dos Santos CA, Mendes JS, Brandão MM, Azzoni SF, de Souza AP (2018) Network of proteins, enzymes and genes linked to biomass degradation shared by Trichoderma species. Sci Rep 8(1):1–11

    Google Scholar 

  • Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, Yi H, Yang Z, Yin Y (2018) dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res 46(D1):D516–D521

    CAS  PubMed  Google Scholar 

  • Huang X, Men P, Tang S, Lu X (2021) Aspergillus terreus as an industrial filamentous fungus for pharmaceutical biotechnology. Curr Opin Biotechnol 69:273–280. https://doi.org/10.1016/j.copbio.2021.02.004

    Article  CAS  PubMed  Google Scholar 

  • Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12(2):115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley D, Araki H, Tamada Y, Dunmore B, Sanders D, Humphreys S, Affara M, Imoto S, Yasuda K, Tomiyasu Y (2012) Gene network inference and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids Res 40(6):2377–2398

    CAS  PubMed  Google Scholar 

  • Huynen M, Snel B, Lathe W, Bork P (2000) Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res 10(8):1204–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jauhal AA, Newcomb RD (2021) Assessing genome assembly quality prior to downstream analysis: N50 versus BUSCO. Mol Ecol Resour 21(5):1416–1421. https://doi.org/10.1111/1755-0998.13364

    Article  CAS  PubMed  Google Scholar 

  • Jhalia V, Swarnkar T (2021) A critical review on the application of artificial neural network in bioinformatics. Data Anal Bioinform A Mach Learn Perspect 2021:51–76

    Google Scholar 

  • Jouzani GS, Tabatabaei M, Aghbashlo M (2020) Fungi in fuel biotechnology. Springer, Berlin

    Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamble A, Srinivasan S, Singh H (2019) In-silico bioprospecting: finding better enzymes. Mol Biotechnol 61(1):53–59

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M (2002) The KEGG database. In: Novartis Foundation Symposium, 2002. Wiley Online Library, pp 91–100

  • Karimi Aghcheh R, Németh Z, Atanasova L, Fekete E, Paholcsek M, Sándor E, Aquino B, Druzhinina IS, Karaffa L, Kubicek CP (2014) The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression. PLoS ONE 9(11):e112799. https://doi.org/10.1371/journal.pone.0112799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaji H, Hayashizaki Y (2008) Genome annotation. Bioinformatics 2:125–139

    Google Scholar 

  • Kiesenhofer DP, Mach RL, Mach-Aigner AR (2018) Influence of cis element arrangement on promoter strength in Trichoderma reesei. Appl Environ Microbiol 84(1):e01742-e11717. https://doi.org/10.1128/AEM.01742-17

    Article  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):1–13

    Google Scholar 

  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    CAS  PubMed  Google Scholar 

  • Koutrouli M, Karatzas E, Paez-Espino D, Pavlopoulos GA (2020) A guide to conquer the biological network era using graph theory. Front Bioeng Biotechnol 8:34

    PubMed  PubMed Central  Google Scholar 

  • Krassowski M, Das V, Sahu SK, Misra BB (2020) State of the Field in multi-omics research: from computational needs to data mining and sharing. Front Genet 2020:1

    Google Scholar 

  • Krogh A, Brown M, Mian IS, Sjölander K, Haussler D (1994) Hidden Markov models in computational biology: applications to protein modeling. J Mol Biol 235(5):1501–1531

    CAS  PubMed  Google Scholar 

  • Kubicek CP (2013) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 163(2):133–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lange L, Barrett K, Meyer AS (2021) New method for identifying fungal kingdom enzyme hotspots from genome sequences. J Fungi 7(3):207

    CAS  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9(1):1–13

    Google Scholar 

  • Langfelder P, Mischel PS, Horvath S (2013) When is hub gene selection better than standard meta-analysis? PLoS ONE 8(4):e61505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawler K, Hammond-Kosack K, Brazma A, Coulson RM (2013) Genomic clustering and co-regulation of transcriptional networks in the pathogenic fungus Fusarium graminearum. BMC Syst Biol 7(1):1–16

    Google Scholar 

  • Lee MH, Lee S-W (2013) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genomics Inform 11(3):114

    PubMed  PubMed Central  Google Scholar 

  • Lenfant N, Hainaut M, Terrapon N, Drula E, Lombard V, Henrissat B (2017) A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9. Carbohyd Res 448:166–174

    CAS  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):1–14

    Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W-C, Huang C-H, Chen C-L, Chuang Y-C, Tung S-Y, Wang T-F (2017) Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnol Biofuels 10(1):1–20

    PubMed  PubMed Central  Google Scholar 

  • Li J, Zhou D, Qiu W, Shi Y, Yang J-J, Chen S, Wang Q, Pan H (2018) Application of weighted gene co-expression network analysis for data from paired design. Sci Rep 8(1):1–8

    Google Scholar 

  • Li C-X, Zhao S, Luo X-M, Feng J-X (2020a) Weighted gene co-expression network analysis identifies critical genes for the production of cellulase and xylanase in Penicillium oxalicum. Front Microbiol 11:520

    PubMed  PubMed Central  Google Scholar 

  • Li J-X, Zhang F, Jiang D-D, Li J, Wang F-L, Zhang Z, Wang W, Zhao X-Q (2020b) Diversity of cellulase-producing filamentous fungi from tibet and transcriptomic analysis of a superior cellulase producer Trichoderma harzianum LZ117. Front Microbiol 11:1617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P-g, Yang Q (2005) Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach. Res Microbiol 156(3):416–423

    CAS  PubMed  Google Scholar 

  • Liu R, Chen L, Jiang Y, Zou G, Zhou Z (2017) A novel transcription factor specifically regulates GH11 xylanase genes in Trichoderma reesei. Biotechnol Biofuels 10(1):194. https://doi.org/10.1186/s13068-017-0878-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Wang H, Tian P, Yao X, Sun H, Wang Q, Delgado-Baquerizo M (2020) Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biol Biochem 144:107763

    CAS  Google Scholar 

  • Liu H, Wu H, Wang Y, Wang H, Chen S, Yin Z (2021) Comparative transcriptome profiling and co-expression network analysis uncover the key genes associated withearly-stage resistance to Aspergillus flavus in maize. BMC Plant Biol 21(1):216. https://doi.org/10.1186/s12870-021-02983-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes AMM, de Mélo AHF, Procopio DP, Teixeira GS, Carazzolle MF, de Carvalho LM, Adelantado N, Pereira GA, Ferrer P, Maugeri Filho F (2020) Genome sequence of Acremonium strictum AAJ6 strain isolated from the Cerrado biome in Brazil and CAZymes expression in thermotolerant industrial yeast for ethanol production. Process Biochem 98:139–150

    CAS  Google Scholar 

  • López-Gómez JP, Venus J (2021) Potential role of sequential solid-state and submerged-liquid fermentations in a circular bioeconomy. Fermentation 7:2. https://doi.org/10.3390/fermentation7020076

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from’omics to the field. Annu Rev Phytopathol 48:395–417

    CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):1–21

    Google Scholar 

  • Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol 15(6):8746

    Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K-I, Arima T, Akita O, Kashiwagi Y (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438(7071):1157–1161

    PubMed  Google Scholar 

  • Magi A, Semeraro R, Mingrino A, Giusti B, D’Aurizio R (2018) Nanopore sequencing data analysis: state of the art, applications and challenges. Brief Bioinform 19(6):1256–1272

    CAS  PubMed  Google Scholar 

  • Maharachchikumbura SS, Wanasinghe DN, Cheewangkoon R, Al-Sadi AM (2021) Uncovering the hidden taxonomic diversity of fungi in Oman. Fungal Divers 2021:1–40

    Google Scholar 

  • Manavalan T, Liu R, Zhou Z, Zou G (2017) Optimization of acetyl xylan esterase gene expression in Trichoderma reesei and its application to improve the saccharification efficiency on different biomasses. Process Biochem 58:160–166

    CAS  Google Scholar 

  • Marcotte EM, Pellegrini M, Ng H-L, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285(5428):751–753

    CAS  PubMed  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D (2008a) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnol 26(5):553–560

    CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008b) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnol 26(5):553–560. https://doi.org/10.1038/nbt1403

    Article  CAS  Google Scholar 

  • Martins-Santana L, Nora LC, Sanches-Medeiros A, Lovate GL, Cassiano MH, Silva-Rocha R (2018) Systems and synthetic biology approaches to engineer fungi for fine chemical production. Front Bioeng Biotechnol 6:117

    PubMed  PubMed Central  Google Scholar 

  • Martins-Santana L, Paula RGd, Silva AG, Lopes DCB, Silva RdN, Silva-Rocha R (2020) CRZ1 regulator and calcium cooperatively modulate holocellulases gene expression in Trichoderma reesei QM6a. Genet Mol Biol 43(2):e20190244–e20190244. https://doi.org/10.1590/1678-4685-GMB-2019-0244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17(1):4–11

    CAS  PubMed  Google Scholar 

  • Medema MH (2018) Computational genomics of specialized metabolism: from natural product discovery to microbiome ecology. Msystems 3:2

    Google Scholar 

  • Mering CV, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31(1):258–261

    Google Scholar 

  • Mhuantong W, Charoensri S, Poonsrisawat A, Pootakham W, Tangphatsornruang S, Siamphan C, Suwannarangsee S, Eurwilaichitr L, Champreda V, Charoensawan V, Chantasingh D (2021) High quality aspergillus aculeatus genomes and transcriptomes: a platform for cellulase activity optimization toward industrial applications. Front Bioeng Biotechnol 1594:8. https://doi.org/10.3389/fbioe.2020.607176

    Article  Google Scholar 

  • Milić D, Veprintsev DB (2015) Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Front Pharmacol 6:66

    PubMed  PubMed Central  Google Scholar 

  • Min B, Grigoriev IV, Choi I-G (2017) FunGAP: fungal genome annotation pipeline using evidence-based gene model evaluation. Bioinformatics 33(18):2936–2937

    CAS  PubMed  Google Scholar 

  • Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA (2000) A whole-genome assembly of Drosophila. Science 287(5461):2196–2204

    CAS  PubMed  Google Scholar 

  • Nakano FK, Lietaert M, Vens C (2019) Machine learning for discovering missing or wrong protein function annotations. BMC Bioinform 20(1):1–32

    Google Scholar 

  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438(7071):1151–1156

    CAS  PubMed  Google Scholar 

  • Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W (2012) A new Zn(II)(2)Cys(6)-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genet Biol 49(5):388–397. https://doi.org/10.1016/j.fgb.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  • Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, Prjibelsky A, Pyshkin A, Sirotkin A, Sirotkin Y (2013) Assembling genomes and mini-metagenomes from highly chimeric reads. In: Annual international conference on research in computational molecular biology, 2013. Springer, pp 158–170

  • Obayashi T, Kinoshita K (2009) Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res 16(5):249–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlov YL, Baranova AV (2020) bioinformatics of genome regulation and systems biology. Front Genet 2020:11

    Google Scholar 

  • Overbeek R, Fonstein M, D’souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci 96(6):2896–2901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37(18):e123–e123

    PubMed  PubMed Central  Google Scholar 

  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14(4):417–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci 96(8):4285–4288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira R, Oliveira J, Sousa M (2020) Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J Clin Med 9(1):132

    CAS  PubMed Central  Google Scholar 

  • Peter J, De Chiara M, Friedrich A, Yue J-X, Pflieger D, Bergström A, Sigwalt A, Barre B, Freel K, Llored A (2018) Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556(7701):339–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, Wishart D (2019) Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites 9(4):76

    CAS  PubMed Central  Google Scholar 

  • Pop M, Salzberg SL (2008) Bioinformatics challenges of new sequencing technology. Trends Genet 24(3):142–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popovic A, Tchigvintsev A, Tran H, Chernikova TN, Golyshina OV, Yakimov MM, Golyshin PN, Yakunin AF (2015) Metagenomics as a tool for enzyme discovery: hydrolytic enzymes from marine-related metagenomes. Prokaryotic Syst Biol 2015:1–20

    Google Scholar 

  • Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sándor E, Hartl L, Karaffa L, Druzhinina IS, Seiboth B, Le Crom S, Kubicek CP (2011) The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12(1):269. https://doi.org/10.1186/1471-2164-12-269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pramesh D, Prasannakumar MK, Muniraju KM, Mahesh H, Pushpa H, Manjunatha C, Saddamhusen A, Chidanandappa E, Yadav MK, Kumara MK (2020) Comparative genomics of rice false smut fungi Ustilaginoidea virens Uv-Gvt strain from India reveals genetic diversity and phylogenetic divergence. 3 Biotech 10(8):1–14

    Google Scholar 

  • Pucci F, Kwasigroch JM, Rooman M (2017) SCooP: an accurate and fast predictor of protein stability curves as a function of temperature. Bioinformatics 33(21):3415–3422

    CAS  PubMed  Google Scholar 

  • Qu K, Garamszegi S, Wu F, Thorvaldsdottir H, Liefeld T, Ocana M, Borges-Rivera D, Pochet N, Robinson JT, Demchak B (2016) Integrative genomic analysis by interoperation of bioinformatics tools in GenomeSpace. Nat Methods 13(3):245–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(2):W116–W120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    CAS  PubMed  Google Scholar 

  • Ronda L, Bruno S, Bettati S, Storici P, Mozzarelli A (2015) From protein structure to function via single crystal optical spectroscopy. Front Mol Biosci 2:12

    PubMed  PubMed Central  Google Scholar 

  • Rosolen RR, Aono AH, Almeida DA, Ferreira Filho JA, Horta MAC, de Souza AP (2020) Comparative gene coexpression networks analysis reveals different strategies of Trichoderma spp. associated with XYR1 and CRE1 during cellulose degradation. bioRxiv preprint

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16(10):944–945

    CAS  PubMed  Google Scholar 

  • Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinforms 23(19):2507–2517

  • Saha A, Kim Y, Gewirtz AD, Jo B, Gao C, McDowell IC, Engelhardt BE, Battle A, Aguet F, Ardlie KG (2017) Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res 27(11):1843–1858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saldarriaga-Hernández S, Velasco-Ayala C, Flores PL-I, de Jesús Rostro-Alanis M, Parra-Saldivar R, Iqbal HM, Carrillo-Nieves D (2020) Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int J Biol Macromol 161:1099–1116

    PubMed  Google Scholar 

  • Salmeán AA, Guillouzo A, Duffieux D, Jam M, Matard-Mann M, Larocque R, Pedersen HL, Michel G, Czjzek M, Willats WG (2018) Double blind microarray-based polysaccharide profiling enables parallel identification of uncharacterized polysaccharides and carbohydrate-binding proteins with unknown specificities. Sci Rep 8(1):1–11

    Google Scholar 

  • Santos CA, Zanphorlin LM, Crucello A, Tonoli CC, Ruller R, Horta MA, Murakami MT, de Souza AP (2016) Crystal structure and biochemical characterization of the recombinant ThBgl, a GH1 β-glucosidase overexpressed in Trichoderma harzianum under biomass degradation conditions. Biotechnol Biofuels 9(1):1–11

    Google Scholar 

  • Santos CA, Ferreira-Filho JA, O’Donovan A, Gupta VK, Tuohy MG, Souza AP (2017) Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation. Microb Cell Fact 16(1):1–11

    Google Scholar 

  • Santos CA, Morais MA, Terrett OM, Lyczakowski JJ, Zanphorlin LM, Ferreira-Filho JA, Tonoli CC, Murakami MT, Dupree P, Souza AP (2019) An engineered GH1 β-glucosidase displays enhanced glucose tolerance and increased sugar release from lignocellulosic materials. Sci Rep 9(1):1–10

    PubMed  PubMed Central  Google Scholar 

  • Saravanan A, Kumar PS, Vo D-VN, Jeevanantham S, Karishma S, Yaashikaa PR (2021) A review on catalytic-enzyme degradation of toxic environmental pollutants: microbial enzymes. J Hazard Mater 419:126451. https://doi.org/10.1016/j.jhazmat.2021.126451

    Article  CAS  PubMed  Google Scholar 

  • Sazal M, Mathee K, Ruiz-Perez D, Cickovski T, Narasimhan G (2020) Inferring directional relationships in microbial communities using signed Bayesian networks. BMC Genomics 21(6):663. https://doi.org/10.1186/s12864-020-07065-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, Smith KM, Baker SE, Freitag M, Kubicek CP (2012) The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol 84(6):1150–1164. https://doi.org/10.1111/j.1365-2958.2012.08083.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70(2):283–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sieber CM, Lee W, Wong P, Münsterkötter M, Mewes H-W, Schmeitzl C, Varga E, Berthiller F, Adam G, Güldener U (2014) The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS ONE 9(10):e110311

    PubMed  PubMed Central  Google Scholar 

  • Silva F, Gonçalves D, Lopes D (2020) The use of bioinformatics tools to characterize a hypothetical protein from Penicillium rubens. Genet Mol Res 19(2):1–18

    Google Scholar 

  • Silva-Rocha R, Castro LdS, Antoniêto ACC, Guazzaroni M-E, Persinoti GF, Silva RN (2014) Deciphering the Cis-regulatory elements for XYR1 and CRE1 regulators in Trichoderma reesei. PLoS ONE 9(6):e99366. https://doi.org/10.1371/journal.pone.0099366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Bajar S, Devi A, Pant D (2021) An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresourc Technol Rep 14:100652. https://doi.org/10.1016/j.biteb.2021.100652

    Article  Google Scholar 

  • Singh J, Gehlot P (2020) New and future developments in microbial biotechnology and bioengineering: recent advances in application of fungi and fungal metabolites. Curr Aspects (Technical Report)

  • Sivashankari S, Shanmughavel P (2006) Functional annotation of hypothetical proteins–a review. Bioinformation 1(8):335

    PubMed  PubMed Central  Google Scholar 

  • Skellam E (2019) Strategies for engineering natural product biosynthesis in fungi. Trends Biotechnol 37(4):416–427. https://doi.org/10.1016/j.tibtech.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  • Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7(1):1–12

    PubMed  Google Scholar 

  • Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform 13(1):1–21

    Google Scholar 

  • Stajich JE (2017) Fungal genomes and insights into the evolution of the kingdom. Fungal Kingd 2017:619–633

    Google Scholar 

  • Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33(Suppl–2):W465–W467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(suppl_1):D535–D539

    CAS  PubMed  Google Scholar 

  • Steindorff AS, do Nascimento Silva R, Coelho ASG, Nagata T, Noronha EF, Ulhoa CJ (2012) Trichoderma harzianum expressed sequence tags for identification of genes with putative roles in mycoparasitism against Fusarium solani. Biol Control 61(2):134–140

    CAS  Google Scholar 

  • Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and d-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5(12):2128. https://doi.org/10.1128/EC.00211-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276

    CAS  PubMed  Google Scholar 

  • Subramanian I, Verma S, Kumar S, Jere A, Anamika K (2020) Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights 14:1177932219899051

    PubMed  PubMed Central  Google Scholar 

  • Teigiserova DA, Bourgine J, Thomsen M (2021) Closing the loop of cereal waste and residues with sustainable technologies: an overview of enzyme production via fungal solid-state fermentation. Sustain Prod Consumpt 27:845–857. https://doi.org/10.1016/j.spc.2021.02.010

    Article  Google Scholar 

  • Todeschini A-L, Georges A, Veitia RA (2014) Transcription factors: specific DNA binding and specific gene regulation. Trends Genet 30(6):211–219. https://doi.org/10.1016/j.tig.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  • Tomer A, Singh R, Singh SK, Dwivedi SA, Reddy CU, Keloth MRA, Rachel R (2021) Role of fungi in bioremediation and environmental sustainability. In: Prasad R, Nayak SC, Kharwar RN, Dubey NK (eds) Mycoremediation and environmental sustainability: Volume 3. Springer International Publishing, Cham, pp 187–200. https://doi.org/10.1007/978-3-030-54422-5_8

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uechi K, Watanabe M, Fujii T, Kamachi S, Inoue H (2020) Identification and biochemical characterization of major β-mannanase in Talaromyces cellulolyticus mannanolytic system. Appl Biochem Biotechnol 2020:1–16

    Google Scholar 

  • Ulrich LE, Zhulin IB (2007) MiST: a microbial signal transduction database. Nucleic Acids Res 35(suppl_1):D386–D390

    CAS  PubMed  Google Scholar 

  • Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32(12):1633–1651

    CAS  PubMed  Google Scholar 

  • Usman A, Mohammed S, Mamo J (2021) Production, optimization, and characterization of an acid protease from a filamentous fungus by solid-state fermentation. Int J Microbiol 2021:6685963–6685963. https://doi.org/10.1155/2021/6685963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Den Berg MA, Albang R, Albermann K, Badger JH, Daran J-M, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26(10):1161–1168

    CAS  PubMed  Google Scholar 

  • van den Berg RA, Braaksma M, van der Veen D, van der Werf MJ, Punt PJ, van der Oost J, de Graaff LH (2010) Identification of modules in Aspergillus niger by gene co-expression network analysis. Fungal Genet Biol 47(6):539–550

    PubMed  Google Scholar 

  • Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Global protein function prediction from protein-protein interaction networks. Nat Biotechnol 21(6):697–700

    CAS  PubMed  Google Scholar 

  • Vella D, Zoppis I, Mauri G, Mauri P (2017) Di Silvestre D (2017) From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data. EURASIP J Bioinf Syst Biol 1:1–16

    Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA (2001) The sequence of the human genome. Science 291(5507):1304–1351

    CAS  PubMed  Google Scholar 

  • Viniegra-González G, Favela-Torres E, Aguilar CN, Rómero-Gomez SdJ, Dı́az-Godı́nez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13(2):157–167. https://doi.org/10.1016/S1369-703X(02)00128-6

    Article  Google Scholar 

  • Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One 9 (11):e112963

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B-T, Hu S, Yu X-Y, Jin L, Zhu Y-J, Jin F-J (2020) Studies of cellulose and starch utilization and the regulatory mechanisms of related enzymes in fungi. Polymers 12(3):530

    CAS  PubMed Central  Google Scholar 

  • Wei W, McCusker JH, Hyman RW, Jones T, Ning Y, Cao Z, Gu Z, Bruno D, Miranda M, Nguyen M (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci 104(31):12825–12830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Chen L, Tang J-W, Matsuda Y (2020) Discovery of pyranoviolin A and its biosynthetic gene cluster in Aspergillus violaceofuscus. Front Microbiol 11:2488

    Google Scholar 

  • Wilson EO (1999) Consilience: The unity of knowledge, vol 31. Vintage, New York

    Google Scholar 

  • Wolfe CJ, Kohane IS, Butte AJ (2005) Systematic survey reveals general applicability of" guilt-by-association" within gene coexpression networks. BMC Bioinform 6(1):1–10

    Google Scholar 

  • Wu C, Yang F, Smith KM, Peterson M, Dekhang R, Zhang Y, Zucker J, Bredeweg EL, Mallappa C, Zhou X (2014) Genome-wide characterization of light-regulated genes in Neurospora crassa. G3: Genes, Genomes, Genetics 4(9):1731–1745

  • Xu T, Zheng X, Li B, Jin P, Qin Z, Wu H (2020) A comprehensive review of computational prediction of genome-wide features. Brief Bioinform 21(1):120–134

    CAS  Google Scholar 

  • Xu Z, Hejzlar P (2008) MCODE, Version 2.2: an MCNP-ORIGEN depletion program. In: Massachusetts Institute of Technology. Center for Advanced Nuclear Energy

  • Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35(suppl_2):W265–W268

  • Yang Z, Zhang Z (2018) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review. Biotechnol Adv 36(1):182–195

    CAS  PubMed  Google Scholar 

  • Yang KK, Wu Z, Arnold FH (2019) Machine-learning-guided directed evolution for protein engineering. Nat Methods 16(8):687–694

    CAS  PubMed  Google Scholar 

  • Yu J, Chang P-K, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70(3):1253–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeilinger S, Ebner A, Marosits T, Mach R, Kubicek C (2001) The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol Genet Genomics 266(1):56–63. https://doi.org/10.1007/s004380100518

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Acencio ML, Lemke N (2016) Predicting essential genes and proteins based on machine learning and network topological features: a comprehensive review. Front Physiol 7:75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:1

  • Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S (2010) Weighted gene coexpression network analysis: state of the art. J Biopharm Stat 20(2):281–300

    PubMed  Google Scholar 

  • Zhao Z, Liu H, Wang C, Xu J-R (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14(1):1–15

    Google Scholar 

  • Zhao X-Q, Zhang X-Y, Zhang F, Zhang R, Jiang B-J, Bai F-W (2018) Metabolic engineering of fungal strains for efficient production of cellulolytic enzymes. In: Fungal cellulolytic enzymes. Springer, pp 27–41

  • Zhou X, Qi X, Huang H, Zhu H (2019) Sequence and structural analysis of AA9 and AA10 LPMOs: an insight into the basis of substrate specificity and regioselectivity. Int J Mol Sci 20(18):4594

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2015/09202-0 and 2018/19660-4), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Biology Program 88882.160095/2013–01), and Conselho Nacional de Desenvolvimento Científico e Tecnológico for a Research Fellowship to APS (CNPq 312777/2018-3) and grants to CAS (CNPq Univeral 430350/2018-0). MACH received fellowship from FAPESP (2020/10536-9). AHA and RRR received PhD fellowships from FAPESP (2019/03232-6 and 2020/13420-1, respectively).

Author information

Authors and Affiliations

Authors

Contributions

APS and JAFF conceptualized the manuscript. JAFF, RRR, DAA, PHCA, MLLM, AHA, CAS, MACH and APS wrote the manuscript. JAFF, AHA and MLLM prepared the figures. JAFF and PHCA prepared the tables. CAS, MACH and APS revised the manuscript.

Corresponding author

Correspondence to Anete P. de Souza.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Consent for publication

All authors agree to the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filho, J.A.F., Rosolen, R.R., Almeida, D.A. et al. Trends in biological data integration for the selection of enzymes and transcription factors related to cellulose and hemicellulose degradation in fungi. 3 Biotech 11, 475 (2021). https://doi.org/10.1007/s13205-021-03032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-03032-y

Keywords

Navigation