Aballay E, Prodan S, Zamorano A, Castaneda-Alvarez C (2017) Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World J Microbiol Biotechnol 33:131. https://doi.org/10.1007/s11274-017-2303-9
Article
PubMed
CAS
Google Scholar
Abidi F, Aissaoui N, Chobert J-M, Haertlé T, Marzouki MN (2014) Neutral serine protease from Penicillium italicum. Purification, biochemical characterization, and use for antioxidative peptide preparation from Scorpaena notata muscle. Appl Biochem Biotechnol 174(1):186–205. https://doi.org/10.1007/s12010-014-1052-6
Article
PubMed
CAS
Google Scholar
Abousaway O, Rakhshandehroo T, Van den Abbeele AD, Kircher MF, Rashidian M (2021) Noninvasive imaging of cancer immunotherapy. Nanotheranostics 5:90–112. https://doi.org/10.7150/ntno.50860
Article
PubMed
PubMed Central
Google Scholar
Abu-Tahon MA, Arafat HH, Isaac GS (2020) Laundry detergent compatibility and dehairing efficiency of alkaline thermostable protease produced from Aspergillus terreus under solid-state fermentation. J Oleo Sci 69(3):241–254. https://doi.org/10.5650/jos.ess19315
Article
PubMed
CAS
Google Scholar
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA (2018) Proteases and protease inhibitors in infectious diseases. Med Res Rev 38:1295–1331. https://doi.org/10.1002/med.21475
Article
PubMed
CAS
Google Scholar
Agyei D, Ongkudon CM, Wei CY, Chan AS, Danquah MK (2016) Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod Proc 98:244–256. https://doi.org/10.1016/j.fbp.2016.02.003
Article
CAS
Google Scholar
Ahmad W, Tayyab M, Aftab MN, Hashmi AS, Ahmad MD, Firyal S, Wasim M, Awan AR (2020) Optimization of conditions for the higher level production of protease: characterization of protease from Geobacillus SBS-4S. Waste Biomass Valori. https://doi.org/10.1016/j.bcab.2020.101631
Article
Google Scholar
Aissaoui N, Chobert J-M, Haertlé T, Marzouki MN, Abidi F (2016) Purification and biochemical characterization of a neutral serine protease from Trichoderma harzianum. use in antibacterial peptide production from a fish by-product hydrolysate. Appl Biochem Biotechnol 182:831–845. https://doi.org/10.1007/s12010-016-2365-4
Article
PubMed
CAS
Google Scholar
Al-Abdalall AH, Al-Khaldi EM (2016) Recovery of silver from used X-ray film using alkaline protease from Bacillus subtilis sub sp. subtilis. Afr J Biotechnol 15:1413–1416. https://doi.org/10.5897/AJB2016.15340
Article
CAS
Google Scholar
Al-Dhabi NA, Esmail GA, Ghilan A-KM, Arasu MV, Duraipandiyan V, Ponmurugan K (2020) Characterization and fermentation optimization of novel thermo stable alkaline protease from Streptomyces sp. Al-Dhabi-82 from the Saudi Arabian environment for eco-friendly and industrial applications. J King Saud Univ Sci 32:1258–1264. https://doi.org/10.1016/j.jksus.2019.11.011
Article
Google Scholar
Ali N, Ullah N, Qasim M, Rahman H, Khan SN, Sadig A et al (2016) Molecular characterization and growth optimization of halo-tolerant protease producing Bacillus subtilis Strain BLK-1.5 isolated from salt mines of Karak, Pakistan. Extremophiles 20:395–402. https://doi.org/10.1007/s00792-016-0830-1
Article
PubMed
CAS
Google Scholar
Alma’abadi AD, Gojobori T, Mineta K (2015) Marine metagenome as a resource for novel enzymes. Genom Proteom Bioinform 13(5):290–295. https://doi.org/10.1016/j.gpb.2015.10.001
Article
Google Scholar
Alves MP, Salgado RL, Eller MR, Vidigal PMP, de Carvalho AF (2016) Characterization of a heat-resistant extracellular protease from Pseudomonas fluorescens 07A shows that low temperature treatments are more effective in deactivating its proteolytic activity. J Dairy Sci 99(10):7842–7851. https://doi.org/10.3168/jds.2016-11236
Article
PubMed
CAS
Google Scholar
Ammasi R, Victor JS, Chellan R, Chellappa M (2020) Alkaline protease for an efficacious rehydration of skin matrix by a novel Bacillus crolab MTCC 5468 in sustainable leather production: a green approach. Biotechnol Lett 42:249–267. https://doi.org/10.1007/s10529-019-02769-0
Article
PubMed
CAS
Google Scholar
Anandharaj M, Sivasankari B, Siddharthan N, Rani RP, Sivakumar S (2016) Production, purification, and biochemical characterization of thermostable metallo-protease from novel Bacillus alkalitelluris TWI3 isolated from tannery waste. Appl Biochem Biotechnol 178(8):1666–1686. https://doi.org/10.1007/s12010-015-1974-7
Article
PubMed
CAS
Google Scholar
Antink MMH, Sewczyk T, Kroll S, Árki P, Beutel S, Rezwan K et al (2019) Proteolytic ceramic capillary membranes for the production of peptides under flow. Biochem Eng J 147:89–99. https://doi.org/10.1016/j.bej.2019.04.005
Article
CAS
Google Scholar
Ao X, Yu X, Wu D et al (2018) Purification and characterization of neutral protease from Aspergillus oryzae Y1 isolated from naturally fermented broad beans. AMB Express 8:96. https://doi.org/10.1186/s13568-018-0611-6
Article
PubMed
PubMed Central
CAS
Google Scholar
Asgher M, Bashir F, Iqbal HM (2018) Protease-based cross-linked enzyme aggregates with improved catalytic stability, silver removal, dehairing potentials. Int J Biol Macromol 118:1247–1256. https://doi.org/10.1016/j.ijbiomac.2018.06.107
Article
PubMed
CAS
Google Scholar
Ash K, Sushma, Ramteke PW (2018) Optimization of extracellular alkaline protease production from Pseudomonas aeruginosa isolated from soil samples. Inter J Agric Environ Biotechnol 11:187–194. https://doi.org/10.30954/0974-1712.2018.00178.24
Article
Google Scholar
Asha B, Palaniswamy M (2018) Optimization of alkaline protease production by Bacillus cereus FT 1 isolated from soil. J Appl Pharma Sci 8:119–127. https://doi.org/10.7324/JAPS.2018.8219
Article
CAS
Google Scholar
Bajaj BK, Sharma P (2011) An alkali-thermotolerant extracellular protease from a newly isolated Streptomyces sp. DP2. New Biotechnol 28(6):725–732. https://doi.org/10.1016/j.nbt.2011.01.001
Article
CAS
Google Scholar
Banerjee G, Ray AK (2017) Impact of microbial proteases on biotechnological industries. Biotechnol Genetic Engg Rev 33:119–143. https://doi.org/10.1080/02648725.2017.1408256
Article
CAS
Google Scholar
Baweja M, Nain L, Kawarabayasi Y, Shukla P (2016a) Current technological improvements in enzymes toward their biotechnological applications. Front Microbiol 7:965. https://doi.org/10.3389/fmicb.2016.00965
Article
PubMed
PubMed Central
Google Scholar
Baweja M, Tiwari R, Singh PK, Nain L, Shukla P (2016b) An alkaline protease from Bacillus pumilus MP 27: functional analysis of its binding model toward its applications as detergent additive. Front Microbiol 7:1195. https://doi.org/10.3389/fmicb.2016.01195
Article
PubMed
PubMed Central
Google Scholar
Baweja M, Singh PK, Sadaf A, Tiwari R, Nain L, Khare SK, Shukla P (2017) Cost effective characterization process and molecular dynamic simulation of detergent compatible alkaline protease from Bacillus pumilus strain MP27. Proc Biochem 58:199–203. https://doi.org/10.1016/j.procbio.2017.04.024
Article
CAS
Google Scholar
Benmrad MO, Moujehed E, Elhoul MB, Mechri S, Bejar S, Zouari R, Baffoun A, Jaouadi B (2018) Production, purification, and biochemical characterization of serine alkaline protease from Penicillium chrysogenium strain X5 used as excellent bio-additive for textile processing. Int J Biol Macromol 119:1002–1016. https://doi.org/10.1016/j.ijbiomac.2018.07.194
Article
CAS
Google Scholar
Bernardo R, Hongying S, Fabio P, Antonio GJ (2018) Plant viral proteases: beyond the role of peptide cutters. Front Plant Sci 9:666. https://doi.org/10.3389/fpls.2018.00666
Article
Google Scholar
Bhagwat PK, Dandge PB (2018) Collagen and collagenolytic proteases: a review. Biocatal Agric Biotechnol 15:43–55. https://doi.org/10.1016/j.bcab.2018.05.005
Article
Google Scholar
Bhatia RK, Ullah S, Hoque HZ, Ahmad I, Yang YH, Bhatt AK, Bhatia SK (2021) Psychrophiles: a source of cold-adapted enzymes for energy efficient biotechnological industrial processes. J Envir Chem Eng 9:104607. https://doi.org/10.1016/j.jece.2020.104607
Article
CAS
Google Scholar
Białkowska AM, Morawski K, Florczak T (2017) Extremophilic proteases as novel and efficient tools in short peptide synthesis. J Ind Microbiol Biotechnol 44:1325–1342. https://doi.org/10.1007/s10295-017-1961-9
Article
PubMed
CAS
Google Scholar
Bilal T, Malik B, Hakeem KR (2018) Metagenomic analysis of uncultured microorganisms and their enzymatic attributes. J Microbiol Methods 155:65–69. https://doi.org/10.1016/j.mimet.2018.11.014
Article
PubMed
CAS
Google Scholar
Bond JS (2019) Proteases: history, discovery, and roles in health and disease. J Biol Chem 294:1643–1651. https://doi.org/10.1074/jbc.TM118.004156
Article
PubMed
PubMed Central
CAS
Google Scholar
Boughachiche F, Rachedi K, Duran R et al (2016) Optimization of alkaline protease production by Streptomyces sp. strain isolated from saltpan environment. Afr J Biotechnol 15:1401–1412. https://doi.org/10.5897/AJB2016.15259
Article
Google Scholar
Briki S, Hamdi O, Landoulsi A (2016) Enzymatic dehairing of goat skins using alkaline protease from Bacillus sp. SB12. Protein Expr Purif 121:9–16. https://doi.org/10.1016/j.pep.2015.12.021
Article
PubMed
CAS
Google Scholar
Bruno S, Coppola D, di Prisco G, Giordano D, Verde C (2019) Enzymes from marine polar regions and their biotechnological applications. Mar Drugs 17:544. https://doi.org/10.3390/md17100544
Article
PubMed Central
CAS
Google Scholar
Cavello IA, Crespo JM, Garcia SS, Zapiola JM, Luna MF, Cavalitto SF (2015) Plant growth promotion activity of keratinolytic fungi growing on a recalcitrant waste known as “Hair Waste.” Biotechnol Res Int. https://doi.org/10.1155/2015/952921
Article
PubMed
PubMed Central
Google Scholar
Chatha SAS, Asgher M, Iqbal HMN (2017) Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review. Environ Sci Pollut Res 24:14005–14018. https://doi.org/10.1007/s11356-017-8998-1
Article
Google Scholar
Chen D, Wang D, Xu C, Chen C, Li J, Wu W, Huang X, Xie H (2018a) Nematicidal protease genes screened from a soil metagenomic library to control Radopholus similis mediated by Pseudomonas fluorescens pf36. Appl Microbiol Biotechnol 102:3301–3314. https://doi.org/10.1007/s00253-018-8869-9
Article
PubMed
CAS
Google Scholar
Chen H, Li M, Liu C, Zhang H, Xian M, Liu H (2018b) Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microb Cell Fact 17:65. https://doi.org/10.1186/s12934-018-0913-z
Article
PubMed
PubMed Central
CAS
Google Scholar
Chiliveri SR, Koti S, Linga VR (2016) Retting and degumming of natural fibers by pectinolytic enzymes produced from Bacillus tequilensis SV11-UV37 using solid state fermentation. Springerplus 5(1):1–17. https://doi.org/10.1186/s40064-016-2173-x
Article
CAS
Google Scholar
Chu W-H (2007) Optimization of extracellular alkaline protease production from species of Bacillus. J Ind Microbiol Biotechnol 34(3):241–245. https://doi.org/10.1007/s10295-006-0192-2
Article
PubMed
CAS
Google Scholar
Contesini FJ, Rodrigues de Melo R, Sato HH (2017) An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2017.1354354
Article
PubMed
Google Scholar
Contesini FJ, Melo RR, Sato HH (2018) An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol 38:321–334. https://doi.org/10.1080/07388551.2017.1354354
Article
PubMed
CAS
Google Scholar
Culp E, Wright G (2017) Bacterial proteases, untapped antimicrobial drug targets. J Antibiot 70:366–377. https://doi.org/10.1038/ja.2016.138
Article
CAS
Google Scholar
da Silva RR (2017) Bacterial and fungal proteolytic enzymes: production, catalysis and potential applications. Appl Biochem Biotechnol 183:1–19. https://doi.org/10.1007/s12010-017-2427-2
Article
PubMed
CAS
Google Scholar
da Silva RR, Cabral TPdF, Rodrigues A, Hamilton C (2013) Production and partial characterization of serine and metallo peptidases secreted by Aspergillus fumigatus Fresenius in submerged and solid state fermentatio. Braz J Microbiol 44(1):235–243. https://doi.org/10.1590/S1517-83822013000100034
Article
PubMed
PubMed Central
CAS
Google Scholar
da Silva RR, Souto TB, Oliveira TB et al (2016a) Evaluation of the catalytic specificity, biochemical properties, and milk clotting abilities of an aspartic peptidase from Rhizomucor miehei. J Ind Microbiol Biotechnol 43:1059–1069. https://doi.org/10.1007/s10295-016-1780-4
Article
PubMed
CAS
Google Scholar
da Silva RR, Souto TB, Oliveira TB, Oliveira LCG, Karcher D, Juliano MA et al (2016b) Evaluation of the catalytic specificity, biochemical properties, and milk clotting abilities of an aspartic peptidase from Rhizomucor miehei. J Ind Microbiol Biotechnol 43:1059–1069. https://doi.org/10.1016/j.foodchem.2017.01.009
Article
PubMed
CAS
Google Scholar
da Silva RR, de Oliveira LC, Juliano MA, Juliano L, de Oliveira AH, Rosa JC, Cabrod H (2017) Biochemical and milk clotting properties and mapping of catalytic subsites of an extra cellular aspartic peptidase from Basidiomycete fungus, Phanerochete chrysosporium. Food Chem 225:45–54. https://doi.org/10.1016/j.foodchem.2017.01.009
Article
PubMed
CAS
Google Scholar
da Silva OS, de Oliveira RL, de Carvalho SJ, Converti A, Porto TS (2018) Thermodynamic investigation of an alkaline protease from Aspergillus tamarii URM4634: a comparative approach between crude extract and purified enzyme. Int J Biol Macromol 109:1039–1044. https://doi.org/10.1016/j.ijbiomac.2017.11.081
Article
CAS
Google Scholar
Daoud L, Jlidi M, Hmani H, Hadj Brahim A, El Arbi M, Ben Ali M (2017) Characterization of thermo-solvent stable protease from Halobacillus sp. CJ4 isolated from Chott Eldjerid hypersaline lake in Tunisia. J Basic Microbiol 57:104–113. https://doi.org/10.1002/jobm.201600391
Article
PubMed
CAS
Google Scholar
Darwesh OM, El-Hawary AS, El Kelany US, El-Sherbiny GM (2019) Nematicidal activity of thermostable alkaline protease produced by Saccharomonospora viridis strain Hw G550. Biotechnol Rep (amst) 24:e00386. https://doi.org/10.1016/j.btre.2019.e00386
Article
Google Scholar
de Castro RJS, Ohara A, Nishide TG, Albernaz JRM, Soares MH, Sato HH (2015) A new approach for proteases production by Aspergillus niger based on the kinetic and thermodynamic parameters of the enzymes obtained. Biocatal Agric Biotechnol 4(2):199–207. https://doi.org/10.1016/j.bcab.2014.12.001
Article
Google Scholar
de Oliveira CT, Rieger TJ, Daroit DJ (2017) Catalytic properties and thermal stability of a crude protease from the keratinolytic Bacillus sp. CL33A. Biocatal Agric Biotechnol 10:270–277. https://doi.org/10.1016/j.bcab.2017.04.004
Article
Google Scholar
De Oliveira JM, Fernandes P, Benevides RG, de Assis SA (2020) Characterization and immobilization of protease secreted by the fungus Moorella speciosa. 3 Biotech. https://doi.org/10.1007/s13205-020-02412-0
Article
PubMed
PubMed Central
Google Scholar
Deng JJ, Huang WQ, Li ZW, Lu DL, Zhang Y, Luo XC (2018) Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzyme Microb Technol 112:35–42. https://doi.org/10.1016/j.enzmictec.2018.02.002
Article
PubMed
CAS
Google Scholar
Devi SG, Fathima AA, Sanitha M, Iyappan S, Curtis WR, Ramya M (2016) Expression and characterization o falkaline protease from the metagenomic library of tannery activated sludge. J Biosci Bioengineer 122(6):694–700
Article
CAS
Google Scholar
Deng JJ, Shi D, Zhao M et al (2021) Recombinant neutral protease rNpI as fish feed additive to improve protein digestion and growth. Aquacult Res 52:273–281. https://doi.org/10.1111/are.14890
Article
CAS
Google Scholar
Doriya K, Jose N, Gowda M, Kumar D (2016) Solid-state fermentation vs submerged fermentation for the production of l-asparaginase. Adv Food Nutr Res 78:115–135. https://doi.org/10.1016/bs.afnr.2016.05.003
Article
PubMed
CAS
Google Scholar
Dorra G, Ines K, Imen BS, Laurent C, Sana A, Olfa T, Pascal C, Thierry J, Ferid L (2018) Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Bacillus halotolerans strain CT2. Inter J Biol Macromol 111:342–351. https://doi.org/10.1016/j.ijbiomac.2018.01.024
Article
CAS
Google Scholar
dos Santos Aguilar JG, Sato HH (2018) Microbial proteases: production and application in obtaining protein hydrolysates. Food Res Inter 103:253–262. https://doi.org/10.1016/j.foodres.2017.10.044
Article
CAS
Google Scholar
Dudani JS, Warren AD, Bhatia SN (2018) Harnessing protease activity to improve cancer care. Annu Rev Cancer Biol 2:353–376. https://doi.org/10.1146/annurev-cancerbio030617-050549
Article
Google Scholar
Fang Z, Yong YC, Zhang J, Du G, Chen J (2017) Keratinolytic protease: a green biocatalyst for leather industry. Appl Microbiol Biotechnol 101:7771–7779. https://doi.org/10.1007/s00253-017-8484-1
Article
PubMed
CAS
Google Scholar
Far EB, Khosroushahi YA, Dilmaghani A (2020) In silico study of alkaline serine protease and production optimization in Bacillus sp. khoz1 klosed Bacillus safensis isolated from honey. Int J Pept Res Ther 26:2241–2251. https://doi.org/10.1007/s10989-020-10016-8
Article
CAS
Google Scholar
García-Moyano A, Larsen Ø, Gaykawad S, Christakou E, Boccadoro C, Puntervoll P, Bjerga GEK (2020) Fragment exchange plasmid tools for CRISPR/Cas9-mediated gene integration and protease production in Bacillus subtilis. Appl Environ Microbiol 87(1):e02090-e2120. https://doi.org/10.1128/AEM.02090-20
Article
PubMed
PubMed Central
Google Scholar
García-Moyano A, Diaz Y, Navarro J, Almendral D, Puntervoll P, Ferrer M, Bjerga GEK (2021) Two-step functional screen on multiple proteinaceous substrates reveals temperature-robust proteases with a broad-substrate range. Appl Microbiol Biotechnol. 105(8):3195–3209
Article
CAS
Google Scholar
Gerry CJ, Schreiber SL (2020) Unifying principles of bifunctional, proximity-inducing small molecules. Nat Chem Biol 16:369–378. https://doi.org/10.1038/s41589-020-0469-1
Article
PubMed
PubMed Central
CAS
Google Scholar
Gimenes NC, Silveira E, Tambourgi EB (2019) An overview of proteases: production, downstream processes and industrial applications. Sep Purif Rev 50(3):223–243. https://doi.org/10.1080/15422119.2019.1677249
Article
CAS
Google Scholar
Golunski S, Astolfi V, Carniel N, de Oliveira D, Di Luccio M, Mazutti MA, Treichel H (2011) Ethanol precipitation and ultrafiltration of inulinases from Kluyveromyces marxianus. Sep Purif Technol 78(3):261–265. https://doi.org/10.1016/j.seppur.2011.02.019
Article
CAS
Google Scholar
Guleria S, Walia A, Chauhan A, Shirkot CK (2014) Genotypic and phenotypic diversity analysis of alkalophilic proteolytic Bacillus sp. associated with rhizosphere of apple trees in trans Himalayan region of Himachal Pradesh. Proc Natl Acad Sci India B Biol Sci 86(2):331–341. https://doi.org/10.1007/s40011-014-0447-z
Article
CAS
Google Scholar
Guleria S, Walia A, Chauhan A, Shirkot CK (2015) Purification and characterization of detergent stable alkaline protease from Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere. J Basic Microbiol 55:1–15. https://doi.org/10.1002/jobm.201500341
Article
CAS
Google Scholar
Guleria S, Walia A, Chauhan A, Shirkot CK (2016a) Immobilization of Bacillus amyloliquefaciens SP1 and its alkaline protease in various matrices for effective hydrolysis of casein. 3 Biotech 6:208. https://doi.org/10.1007/s13205-016-0519-2
Article
PubMed
PubMed Central
Google Scholar
Guleria S, Walia A, Chauhan A, Shirkot CK (2016b) Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum. Int J Food Microbiol 232:134–143. https://doi.org/10.1016/j.ijfoodmicro.2016.05.030
Article
PubMed
CAS
Google Scholar
Guleria S, Walia A, Chauhan A, Shirkot CK (2016c) Optimization of milk clotting enzyme production by Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere. Bioresour Bioprocess 3:30. https://doi.org/10.1186/s40643-016-0108-6
Article
Google Scholar
Guleria S, Kumar A, Sharma S, Kulshrestha S, Chauhan A (2017) Metagenomics of fermented foods: implications on probiotic development. In: Mining of microbial wealth and metagenomics. Springer, pp 333–355. https://doi.org/10.1007/978-981-10-5708-3_19
Guleria S, Walia A, Chauhan A, Shirkot CK (2018) Production and eco-friendly application of alkaline protease from Bacillus amyloliquefaciens sp1. Indian J Biotechnol 17:448–458. http://nopr.niscair.res.in/handle/123456789/45281
Gupta R, Beg Q, Khan S, Chauhan B (2002) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol 60(4):381–395. https://doi.org/10.1007/s00253-002-1142-1
Article
PubMed
CAS
Google Scholar
Gupta R, Rajput R, Sharma R, Gupta N (2013) Biotechnological applications and prospective market of microbial keratinases. Appl Microbiol Biotechnol 97:9931–9940. https://doi.org/10.1007/s00253-013-5292-0
Article
PubMed
CAS
Google Scholar
Gurumallesh P, Alagu K, Ramakrishnan B, Muthusamy S (2019) A systematic reconsideration on proteases. Inter J Bio Macromol 128:254–267. https://doi.org/10.1016/j.ijbiomac.2019.01.081
Article
CAS
Google Scholar
Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121. https://doi.org/10.1155/2013/329121
Article
PubMed
PubMed Central
CAS
Google Scholar
Hakim A, Bhuiyan FR, Iqbal A, Emon TH, Ahmed J, Azad AK (2018) Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. Heliyon 4:e00646. https://doi.org/10.1016/j.heliyon.2018.e00646
Article
PubMed
PubMed Central
Google Scholar
Hammami A, Bayoudh A, Hadrich B, Abdelhedi O, Jridi M, Nasri M (2020) Response-surface methodology for the production and the purification of a new H2O2-tolerant alkaline protease from Bacillus invictae AH1 strain. Biotech Progress 36:e2965. https://doi.org/10.1002/btpr.2965
Article
CAS
Google Scholar
Hamza TA (2017) Bacterial protease enzyme: safe and good alternative for industrial and commercial use. Int J Chem Biomol Sci 3:1–10
Google Scholar
Hejdysz M, Kaczmarek SA, Kubis M, Wiśniewska Z, Peris S, Budnik S, Rutkowski A (2020) The effect of protease and Bacillus licheniformis on nutritional value of pea, faba bean, yellow lupin and narrow-leaved lupin in broiler chicken diets. Br Poultry Sci 61(3):287–293. https://doi.org/10.1080/00071668.2020.1716303
Article
CAS
Google Scholar
Homaei A, Lavajoo F, Sariri R (2016) Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology. Int J Biol Macromol 88:542–552. https://doi.org/10.1016/j.ijbiomac.2016.04.023
Article
PubMed
CAS
Google Scholar
Hosokawa M, Hoshino Y, Nishikawa Y, Hirose T, Yoon DH, Mori T, Sekiguchi T, Shoji S, Takeyama H (2015) Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes. Biosens Bioelectron 67:379–385. https://doi.org/10.1016/j.bios.2014.08.059
Article
PubMed
CAS
Google Scholar
Hu H, Gao Y, Li X, Chen S, Yan S, Tian X (2020) Identification and nematicidal characterization of proteases secreted by endophytic bacteria Bacillus cereus BCM2. Phytopathology 110(2):336–344. https://doi.org/10.1094/PHYTO-05-19-0164-R
Article
PubMed
CAS
Google Scholar
Huang Y, Wang Y, Xu Y (2017) Purification and characterisation of an acid protease from the Aspergillus hennebergii HX08 and its potential in traditional fermentation. J Inst Brew 123(3):432–441. https://doi.org/10.1002/jib.427
Article
CAS
Google Scholar
Hussain F, Kamal S, Rehman S, Azeem M, Bibi I, Ahmed T, Iqbal HMN (2017) Alkaline protease production using response surface methodology, characterization and industrial exploitation of alkaline protease of Bacillus subtilis sp. Catal Lett 147:1204–1213. https://doi.org/10.1007/s10562-017-2017-5
Article
CAS
Google Scholar
Ibrahim ASS, Elbadawi YB, El-Tayeb MA et al (2019) Alkaline serine protease from the new halotolerant alkaliphilic Salipaludibacillus agaradhaerens strain AK-R: purification and properties. 3 Biotech 9:391. https://doi.org/10.1007/s13205-019-1928-9
Article
PubMed
PubMed Central
Google Scholar
Ida ÉL, da Silva RR, de Oliveira TB, Souto TB, Leite JA, Rodrigues A, Cabral H (2017) Biochemical properties and evaluation of washing performance in commercial detergent compatibility of two collagenolytic serine peptidases secreted by Aspergillus fischeri and Penicillium citrinum. Prep Biochem Biotechnol 47(3):282–290. https://doi.org/10.1080/10826068.2016.1224247
Article
PubMed
CAS
Google Scholar
Imdakim MM, Hassan Z, Aween MM, Elshaafi I, Muhialdin BJ (2015) Milk clotting and proteolytic activity of enzyme preparation from Pediococcus acidilactici SH for dairy products. Afr J Biotechnol 14(2):133–142
Article
CAS
Google Scholar
Jadhav HP, Sonawane MS, Khairnar MH et al (2020) Production of alkaline protease by rhizospheric Bacillus cereus HP_RZ17 and Paenibacillus xylanilyticus HP_RZ19. Environ Sustain 3:5–13. https://doi.org/10.1007/s42398-020-00096-z
Article
CAS
Google Scholar
Jaouadi NZ, Jaouadi B, Aghajari N, Bejar S (2012) The overexpression of the SAPB of Bacillus pumilus CBS and mutated sapB-L31I/T33S/N99Y alkaline proteases in Bacillus subtilis DB430: new attractive properties for the mutant enzyme. Bioresour Technol 105:142–151. https://doi.org/10.1016/j.biortech.2011.11.115
Article
PubMed
CAS
Google Scholar
Jensen K, Østergaard PR, Wilting R, Lassen SF (2010) Identification and characterization of a bacterial glutamic peptidase. BMC Biochem 11(1):1–12. https://doi.org/10.1186/1471-2091-11-47
Article
CAS
Google Scholar
Jo S, Kim S, Shin DH, Kim M-S (2020) Inhibition of SARS-CoV 3CL protease by flavonoids. J Enz Inhib Med Chem 35:145–151. https://doi.org/10.1080/14756366.2019.1690480
Article
CAS
Google Scholar
Joshi S, Satyanarayana T (2013) Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresour Technol 131:76–85. https://doi.org/10.1016/j.biortech.2012.12.124
Article
PubMed
CAS
Google Scholar
Ju S, Lin J, Zheng J, Wang S, Zhou H, Sun M (2016) Alcaligenes faecalis ZD02, a novel nematicidal bacterium with an extracellular serine protease virulence factor. Appl Environ Microbiol 82(7):2112–2120. https://doi.org/10.1128/AEM.03444-15
Article
PubMed
PubMed Central
CAS
Google Scholar
Kalaikumari SS, Vennila T, Monika V, Chandraraj K, Gunasekaran P, Rajendhran J (2019) Bioutilization of poultry feather for keratinase production and its application in leather industry. J Clean Prod 208:44–53. https://doi.org/10.1016/j.jclepro.2018.10.076
Article
CAS
Google Scholar
Kamarudin NB, Sharma S, Gupta A et al (2017) Statistical investigation of extraction parameters of keratin from chicken feather using Design-Expert. 3 Biotech 7:127. https://doi.org/10.1007/s13205-017-0767-9
Article
PubMed
PubMed Central
Google Scholar
Kandasamy S, Muthusamy G, Balakrishnan S, Duraisamy S, Thangasamy S, Seralathan K-K, Chinnappan S (2016) Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech 6(2):167. https://doi.org/10.1007/s13205-016-0481-z
Article
PubMed
PubMed Central
Google Scholar
Kanmani R, Dhivya S, Jayalakshmi S, Vijayabaskar P (2011) Studies on detergent additives of protease enzyme from an estuarine bacterium Bacillus cereus. Int Res J Biotechnol 2(7):157–163
Google Scholar
Karray A, Alonazi M, Horchani H, Ben BA (2021) A novel thermostable and alkaline protease produced from Bacillus stearothermophilus isolated from olive oil mill sols suitable to industrial biotechnology. Molecules 26:1139. https://doi.org/10.3390/molecules26041139
Article
PubMed
PubMed Central
CAS
Google Scholar
Kasana RC, Salwan R, Yadav SK (2011) Microbial proteases: detection, production, and genetic improvement. Crit Rev Microbiol 37(3):262–276. https://doi.org/10.3109/1040841X.2011.577029
Article
PubMed
CAS
Google Scholar
Kshetri P, Ningombam O, Ningombam D (2016) Optimization of alkaline protease production by alkaliphilic Bacillus sp. KW2 in low cost medium using statistical approaches. Appl Micro Open Access 2(3):1–8. https://doi.org/10.4172/2471-9315.1000117
Article
Google Scholar
Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68:726–736. https://doi.org/10.1007/s00253-005-0094-7
Article
PubMed
CAS
Google Scholar
Kumar L, Jain SK (2018) Proteases: a beneficial degradative enzyme in therapeutic applications. Inter J Sci Res Biol Sci 5:114–118. https://doi.org/10.26438/ijsrbs/v5i4.114118
Article
Google Scholar
Kumar DM, Premavathi V, Govindarajan N, Balakumaran M, Kalaichelvan P (2012) Production and purification of alkaline protease from Bacillus sp. MPTK 712 isolated from dairy sludge. Glob Veterinaria 8(5):433–439
CAS
Google Scholar
Kumawat TK, Sharma A, Sharma V, Chandra S (2018) Keratin waste: the biodegradable polymers. Keratin Miroslav Blumenberg IntechOpen. https://doi.org/10.5772/intechopen.79502
Article
Google Scholar
Lam MQ, Nik Mut NN, Thevarajoo S et al (2018) Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech 8:104. https://doi.org/10.1007/s13205-018-1133-2
Article
PubMed
PubMed Central
Google Scholar
Lan G, Li C, He L, Zeng X, Zhu Q (2020) Effects of different strains and fermentation method on nattokinase activity, biogenic amines, and sensory characteristics of natto. J Food Sci Technol 57(12):4414–4423. https://doi.org/10.1007/s13197-020-04478-3
Article
PubMed
CAS
Google Scholar
Lateef A, Adelere IA, Gueguim-Kana EB (2015) Bacillus safensis LAU 13: a new source of keratinase and its multi-functional biocatalytic applications. Biotechnol Biotechnol Equip 29:54–63. https://doi.org/10.1080/13102818.2014.986360
Article
PubMed
CAS
Google Scholar
Li Y, Wu C, Zhou M, Wang ET, Zhang Z, Liu W, Ning J, Xie Z (2017) Diversity of cultivable protease-producing bacteria in laizhou bay sediments, Bohai Sea. China Front Microbiol 8:405. https://doi.org/10.3389/fmicb.2017.00405
Article
PubMed
Google Scholar
Li C, Zhang R, Wang J, Wilson LM, Yan Y (2020) Protein engineering for improving and diversifying natural product biosynthesis. Trends Biotechnol 38(7):729–744. https://doi.org/10.1016/j.tibtech.2019.12.008
Article
PubMed
PubMed Central
CAS
Google Scholar
Limkar MB, Pawar SV, Rathod VK (2019) Statistical optimization of xylanase and alkaline protease co-production by Bacillus sp. using Box-Behnken Design under submerged fermentation using wheat bran as a substrate. Biocatal Agric Biotechnol 17:455–464. https://doi.org/10.1016/j.bcab.2018.12.008
Article
Google Scholar
Liu J, Sharma A, Niewiara MJ, Singh R, Ming R, Yu Q (2018) Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion. BMC Genom 19:26. https://doi.org/10.1186/s12864-017-4394-y
Article
CAS
Google Scholar
Lohse MB, Gulati M, Craik CS, Johnson AD, Nobile CJ (2020) Combination of antifungal drugs and protease inhibitors prevent Candida albicans biofilm formation and disrupt mature biofilms. Front Microbiol 11:1027. https://doi.org/10.3389/fmicb.2020.01027
Article
PubMed
PubMed Central
Google Scholar
Machado ARGM, Teixeira MFS, de Souza Kirsch L, Campelo MDCL, de Aguiar Oliveira IM (2016) Nutritional value and proteases of Lentinus citrinus produced by solid state fermentation of lignocellulosic waste from tropical region. Saudi J Biol Sci 23:621–627. https://doi.org/10.1016/j.sjbs.2015.07.002
Article
PubMed
CAS
Google Scholar
Majumder R, Banik SP, Ramrakhiani L, Khowala S (2015) Bioremediation by alkaline protease (AkP) from edible mushroom Termitomyces clypeatus: optimization approach based on statistical design and characterization for diverse applications. J Chem Technol Biotechnol 90:1886–1896. https://doi.org/10.1002/jctb.4500
Article
CAS
Google Scholar
Mamo J, Assefa F (2018) The role of microbial aspartic protease enzyme in food and beverage industries. J Food Qual 2018:7957269. https://doi.org/10.1155/2018/7957269
Article
CAS
Google Scholar
Mandal S, Banerjee D (2019) Proteases from endophytic fungi with potential industrial applications. In: Yadav A, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Fungal biology. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_10
Chapter
Google Scholar
Mandujano-González V, Villa-Tanaca L, Anducho-Reyes MA, Mercado-Flores Y (2016) Secreted fungal aspartic proteases: a review. Rev Iberoam Micol 33:76–82. https://doi.org/10.1016/j.riam.2015.10.003
Article
PubMed
Google Scholar
Martínez V, Lauritsen I, Hobel T, Li S, Nielsen AT, Nørholm MH (2017) CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability. Nucleic Acids Res 45(20):e171
Article
CAS
Google Scholar
Maruthiah T, Somanath B, Jasmin JV, Immanuel G, Palavesam A (2016) Production, purification and characterization of halophilic organic solvent tolerant protease from marine crustacean shell wastes and its efficacy on deproteinization. 3 Biotech 6:157. https://doi.org/10.1007/s13205-016-0474-y
Article
PubMed
PubMed Central
Google Scholar
Masi C, Chandramohan C, Fazil AM (2017) Immobilization of the magnetic nanoparticles with alkaline protease enzyme produced by Enterococcus hirae and Pseudomonas aeruginosa isolated from dairy effluents. Braz Archive Biol Technol 60:e17160572. https://doi.org/10.1590/1678-4324-2017160572
Article
CAS
Google Scholar
Matkawala F, Nighojkar S, Kumar A, Nighojkar A (2021) Microbial alkaline serine proteases: production, properties and applications. World J Microbiol Biotechnol 37(4):1–12. https://doi.org/10.1007/s11274-021-03036-z
Article
CAS
Google Scholar
Meshram V, Saxena S (2016) Potential fibrinolytic activity of an endophytic Lasiodiplodia pseudotheobromae species. 3 Biotech 6:114. https://doi.org/10.1007/s13205-016-0428-4
Article
PubMed
PubMed Central
Google Scholar
Meshram V, Saxena S, Paul K (2016) Xylarinase: a novel clot busting enzyme from an endophytic fungus Xylaria curta. J Enzyme Inhib Med Chem 31(6):1502–1511. https://doi.org/10.3109/14756366.2016.1151013
Article
PubMed
CAS
Google Scholar
Mhamdi S, Bkhairia I, Nasri R, Mechichi T, Nasri M, Kamoun AS (2017) Evaluation of the biotechnological potential of a novel purified protease BS1 from Bacillus safensis S406 on the chitin extraction and detergent formulation. Int J Biol Macromol 104:739–747. https://doi.org/10.1016/j.ijbiomac.2017.06.062
Article
PubMed
CAS
Google Scholar
Mitra P, Chakrabartty PK (2005) An extracellular protease with depilation activity from Streptomyces nogalator. Microbial Technol 112:35–42
Google Scholar
More SV, Chavan S, Prabhune A (2017) Silk degumming and utilization of silk sericin by hydrolysis using alkaline protease from Beauveria sp. (MTCC 5184): a green approach. J Nat Fibers 15(1):1–11. https://doi.org/10.1080/15440478.2017.1330718
Article
CAS
Google Scholar
Moridshahi R, Bahreini M, Sharifmoghaddam M, Asoodeh A (2020) Biochemical characterization of an alkaline surfactant-stable keratinase from a new keratinase producer, Bacillus zhangzhouensis. Extremophiles 24:693–704. https://doi.org/10.1007/s00792-020-01187-9
Article
PubMed
CAS
Google Scholar
Mothe T, Sultanpuram VR (2016) Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus. 3 Biotech 6:53. https://doi.org/10.1007/s13205-016-0377-y
Article
PubMed
PubMed Central
Google Scholar
Motyan JA, Toth F, Tozser J (2013) Research applications of proteolytic enzymes in molecular biology. Biomolecules 3(4):923–942. https://doi.org/10.3390/biom3040923
Article
PubMed
PubMed Central
CAS
Google Scholar
Muneer F, Siddique MH, Azeem F, Rasul I, Muzammil S, Zubair M, Nadeem H (2020) Microbial l-asparaginase: purification, characterization and applications. Arch Microbiol 5:1–15. https://doi.org/10.1007/s00203-020-01814-1
Article
CAS
Google Scholar
Mukhtar H, Haq I (2013) Comparative evaluation of agroindustrial by products for the production of alkaline protease by wild and mutant strains of Bacillus subtilis in submerged and solid state fermentation. Scientific World J 2013:6. https://doi.org/10.1155/2013/538067
Nadeem F, Mehmood T, Naveed M et al (2019) Protease production from Cheotomium globusum through central composite design using agricultural wastes and its immobilization for industrial exploitation. Waste Biomass Valori. https://doi.org/10.1007/s12649-019-00890-9
Article
Google Scholar
Nahar S, Mizan MFR, Ha AJW, Ha SD (2018) Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Compr Rev Food Sci Food Saf 17(6):1484–1502. https://doi.org/10.1111/1541-4337.12382
Article
PubMed
Google Scholar
Nandan A, Nampoothiri KM (2020) Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Appl Microbiol Biotechnol 104:5243–5257. https://doi.org/10.1007/s00253-020-10641-9
Article
PubMed
CAS
Google Scholar
Naveed M, Nadeem F, Mehmood T, Bilal M, Anwar Z, Amjad F (2021) Protease-a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal Lett 151(2):307–323. https://doi.org/10.1007/s10562-020-03316-7
Article
CAS
Google Scholar
Niyonzima FN, More SS (2013) Screening and optimization of cultural parameters for an alkaline protease production by Aspergillus terreus gr. under submerged fermentation. Int J Pharm Bio Sci 4(1):1016–1028
CAS
Google Scholar
Nongonierma AB, FitzGerald RJ (2015) The scientific evidence for the role of milk protein-derived bioactive peptides in humans: a review. J Funct Foods 17:640–656. https://doi.org/10.1016/j.jff.2015.06.021
Article
CAS
Google Scholar
Oh M, Han JW, Lee C, Choi GJ, Kim H (2018) Nematicidal and plant growth-promoting activity of Enterobacter asburiae HK169: genome analysis provides insight into its biological activities. J Microbiol Biotechnol 28:968–975. https://doi.org/10.4014/jmb.1801.01021
Article
PubMed
CAS
Google Scholar
Omodamilola OI, Ibrahim AU (2018) CRISPR technology: advantages, limitations and future direction. J Biomed Pharm Sci 1(115):2
Google Scholar
Osmolovskiy AA, Popova EA, Kreyer VG, Baranova NA, Egorov NS (2021) Vermiculite as a new carrier for extracellular protease production by Aspergillus spp. under solid-state fermentation. Biotechnol Rep 29:e00576. https://doi.org/10.1016/j.btre.2020.e00576
Article
Google Scholar
Pal GK, Suresh PV (2016) Microbial collagenases: challenges and prospects in production and potential applications in food and nutrition. RSC Adv 6:33763–33780. https://doi.org/10.1039/c5ra23316j
Article
CAS
Google Scholar
Park S, Lee JJ, Yang BM, Cho JH, Kim S, Kang J, Song M (2020) Dietary protease improves growth performance, nutrient digestibility, and intestinal morphology of weaned pigs. J Animal Sci Technol 62(1):21. https://doi.org/10.5187/jast.2020.62.1.21
Article
CAS
Google Scholar
Patel S, Homaei A, El-Seedide HR, Akhtar N (2018) Cathepsins: proteases that are vital for survival but can also be fatal. Biomed Pharmacother 105:526–553. https://doi.org/10.1016/j.biopha.2018.05.148
Article
PubMed
PubMed Central
CAS
Google Scholar
Pathak AP, Rathod MG (2018) A review on alkaline protease producers and their biotechnological perspectives. Ind J Geo Mar Sci 47:1113–1119
Google Scholar
Peng D, Lin J, Huang Q, Zheng W, Liu G, Zheng J, Zhu L, Sun M (2016) A novel metalloproteinase virulence factor is involved in Bacillus thuringiensis pathogenesis in nematodes and insects. Environ Microbiol 18:846–862. https://doi.org/10.1111/1462-2920.13069
Article
PubMed
CAS
Google Scholar
Pessoa TB, Rezende RP, Marques EdLS, Pirovani CP, Dos Santos TF, dos Santos Gonçalves AC, Romano CC, Dotivo NC, Freitas AC, Salay LC (2017) Metagenomic alkaline protease from mangrove sediment. J Basic Microbiol 57(11):962–973. https://doi.org/10.1002/jobm.201700159
Article
PubMed
CAS
Google Scholar
Prabhavathy G, Rajasekara M, Senthilkumar B (2013) Identification of industrially important alkaline protease producing Bacillus subtilis by 16s rRNA sequence analysis and its applications. Int J Res Pharma Biomed Sci 4:332–338
CAS
Google Scholar
Prajapati VS, Ray S, Narayan J, Joshi CC, Patel KC, Trivedi UB, Patel RM (2017) Draft genome sequence of a thermostable, alkaliphilic α-amylase and protease producing Bacillus amyloliquefaciens strain KCP2. 3 Biotech. https://doi.org/10.1007/s13205-017-1005-1
Article
PubMed
PubMed Central
Google Scholar
Prayogo FA, Budiharjo A, Kusumaningrum HP, Wijanarka W, Suprihadi A, Nurhayati N (2020) Metagenomic applications in exploration and development of novel enzymes from nature: a review. J Genet Eng Biotechnol 18(1):1–10. https://doi.org/10.1186/s43141-020-00043-9
Article
Google Scholar
Proteases Market size, regional outlook, application growth potential, COVID-19 impact analysis, COVID-19 impact analysis, competitive market growth & forecast, 2021–2027. https://www.gminsights.com/industry-analysis/proteases-market
Putatunda C, Kundu BS, Bhatia R (2019) Purification and characterization of alkaline protease from Bacillus sp. HD292. Proc Natl Acad Sci India B Biol Sci 89:957–965. https://doi.org/10.1007/s40011-018-1011-z
Article
CAS
Google Scholar
Putranto WS, Kusmajadi S, Hartati C, Apon ZM, Puspo EG, Harsi DK, Maggy TS (2017) Enterococcus faecium 1.15 isolated from bakasam showed milk clotting activity. Annales Bogoriensis 21:9–14
Article
Google Scholar
Putranto WS, Maggy TS, Harsi DK, Puspo EG, Apon ZM (2020a) A novel rennin like protease from Lactobacillus plantarum 1.13 isolated from Indonesian fermented meat (Bakasam). Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2020.101818
Article
Google Scholar
Putranto WS, Mustopa AZ, Arizah K, Prastyowati A (2020b) The purification of rennin-like protease from Lactobacillus paracasei isolated from ettawa goat milk. Annales Bogorienses 24:74–80. https://doi.org/10.14203/ann.bogor.2020.v24.n2.74-80
Article
Google Scholar
Qamar SA, Asgher M, Bilal M (2020) Immobilization of alkaline protease from Bacillus brevis using Ca-Alginate entrapment strategy for improved catalytic stability, silver recovery, and dehairing potentialities. Catal Lett 150:3572–3583. https://doi.org/10.1007/s10562-020-03268-y
Article
CAS
Google Scholar
Qureshi AS, Khushk I, Ali CH, Chisti Y, Ahmad A, Majeed H (2016) Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatal Agric Biotechnol 8:146–151. https://doi.org/10.1016/j.bcab.2016.09.006
Article
Google Scholar
Rahem FZ, Badis A, Zenati B, Mechri S, Hadjidj R, Rekik H, Eddouaouda K, Annane R, Jaouadi B (2021) Characterization of a novel serine alkaline protease from Bacillus atrophaeus NIJ as a thermophilic hydrocarbonoclastic strain and its application in laundry detergent formulations. Algeria J Environ Sci Technol 7:1707–1724
CAS
Google Scholar
Rajput R, Gupta R (2013) Thermostable keratinase from Bacillus pumilus KS12: production, chitin crosslinking and degradation of Sup35NM aggregates. Bioresour Technol 133:118–126. https://doi.org/10.1016/j.biortech.2013.01.091
Article
PubMed
CAS
Google Scholar
Ramakodi MP, Santhosh N, Pragadeesh T, Mohan SV, Basha S (2020) Production of protease enzyme from slaughterhouse effluent: an approach to generate value-added products from waste. Bioresour Technol Rep 12:100552
Article
Google Scholar
Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46:D624–D632. https://doi.org/10.1093/nar/gkx1134
Article
PubMed
CAS
Google Scholar
Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, Ashraf M (2019) Microbial proteases applications. Front Bioeng Biotechnol 7:110. https://doi.org/10.3389/fbioe.2019.00110
Article
PubMed
PubMed Central
Google Scholar
Rehman R, Ahmed M, Siddique A, Hasan F, Hameed A, Jamal A (2017) Catalytic role of thermostable metalloproteases from Bacillus subtilis KT004404 as dehairing and destaining agent. Appl Biochem Biotechnol 181(1):434–450. https://doi.org/10.1007/s12010-016-2222-5
Article
PubMed
CAS
Google Scholar
Rekik H, Jaouadi NZ, Gargouri F, Bejar W, Frikha F, Jmal N, Bejar S, Jaouadi B (2019) Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. Int J Biol Macromol 12:1227–1239. https://doi.org/10.1016/j.ijbiomac.2018.10.139
Article
CAS
Google Scholar
Sa A, Singh A, Garg S, Kumar A, Kumar H (2012) Screening, isolation and characterisation of protease producing moderately halophilic microorganisms. Asian J Microbiol Biotech Env Sci 14(4):603–612
Google Scholar
Sahay H, Yadav AN, Singh AK et al (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:118. https://doi.org/10.1007/s13205-017-0762-1
Article
PubMed
PubMed Central
Google Scholar
Salwan R, Sharma V (2019) Trends in extracellular serine proteases of bacteria as detergent bioadditive: alternate and environmental friendly tool for detergent industry. Arch Microbiol 201:863–877. https://doi.org/10.1007/s00203-019-01662-8
Article
PubMed
CAS
Google Scholar
Sandhya C, Sumantha A, Szakacs G, Pandey A (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Proc Biochem 40(8):2689–2694. https://doi.org/10.1016/j.procbio.2004.12.001
Article
CAS
Google Scholar
Sattar H, Bibi Z, Kamran A, Aman A, Qader SAU (2019) Degradation of complex casein polymer: production and optimization of a novel serine metalloprotease from Aspergillus niger KIBGE-IB36. Biocatal Agric Biotechnol 21:101256. https://doi.org/10.1016/j.bcab.2019.101256
Article
Google Scholar
Sharma N (2019) A review on fungal alkaline protease. J Emerg Tech Innov Res 6(6):1–14
CAS
Google Scholar
Sharma A, Gupta SP (2017) Fundamentals of viruses and their proteases. Viral Protease Inhib. https://doi.org/10.1016/B978-0-12-809712-0.00001-0
Article
Google Scholar
Sharma KM, Kumar R, Panwar S, Kumar A (2017) Microbial alkaline proteases: optimization of production parameters and their properties. J Genet Eng Biotechnol 15(1):115–126. https://doi.org/10.1016/j.jgeb.2017.02.001
Article
PubMed
PubMed Central
Google Scholar
Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437(7056):257–261. https://doi.org/10.1038/nature03989
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh S, Bajaj BK (2017) Potential application spectrum of microbial proteases for clean and green industrial production. Energ Ecol Environ 2:370–386. https://doi.org/10.1007/s40974-017-0076-5
Article
Google Scholar
Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174. https://doi.org/10.1007/s13205-016-0485-8
Article
PubMed
PubMed Central
Google Scholar
Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18. https://doi.org/10.1016/j.bej.2008.10.019
Article
CAS
Google Scholar
Soccol CR, da Costa ESF, Letti LAJ, Karp SG, Woiciechowski AL, de Souza Vandenberghe LP (2017) Recent developments and innovations in solid state fermentation. Biotechnol Res Innov 1(1):52–71. https://doi.org/10.1016/j.biori.2017.01.002
Article
Google Scholar
Song P, Cheng L, Tian K et al (2020) Biochemical characterization of two new Aspergillus niger aspartic proteases. 3 Biotech 10:303. https://doi.org/10.1007/s13205-020-02292-4
Article
PubMed
PubMed Central
Google Scholar
Sonune N, Garode A (2018) Isolation, characterization and identification of extracellular enzyme producer Bacillus licheniformis from municipal wastewater and evaluation of their biodegradability. Biotechnol Res Innov 2(1):37–44. https://doi.org/10.1016/j.biori.2018.03.001
Article
Google Scholar
Souza PM, Werneck G, Aliakbarian B, Siqueira F, Filho EXF, Perego P, Converti A, Magalhães PO, Pessoa Junior A (2017) Production, purification and characterization of an aspartic protease from Aspergillus foetidus. Food Chem Toxicol 109:1103–1110. https://doi.org/10.1016/j.fct.2017.03.055
Article
PubMed
CAS
Google Scholar
Srilakshmi J, Madhavi J, Lavanya S, Ammani K (2015) Commercial potential of fungal protease: past, present and future prospects. J Pharm Chem Biol Sci 2(4):218–234
CAS
Google Scholar
Srivastava B, Khatri M, Singh G, Arya SK (2020) Microbial keratinases: an overview of biochemical characterization and its eco-friendly approach for industrial applications. J Clean Prod 252:119847. https://doi.org/10.1016/j.jclepro.2019.119847
Article
CAS
Google Scholar
Steele HL, Wolfgang RS (2005) Metagenomics: advances in ecology and biotechnology. FEMS Microbiol Lett 247(2):105–111. https://doi.org/10.1016/j.femsle.2005.05.011
Article
PubMed
CAS
Google Scholar
Su C, Gong JS, Qin J, Li H, Li H, Xu ZH, Shi JS (2020) The tale of a versatile enzyme: molecular insights into keratinase for its industrial dissemination. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2020.107655
Article
PubMed
Google Scholar
Suleiman AD, Rahman A, Mohd Yusof H, Mohd Shariff F, Yasid NA (2020) Effect of cultural conditions on protease production by a thermophilic Geobacillus thermoglucosidasius SKF4 isolated from Sungai Klah hot Spring Park, Malaysia. Molecules 25(11):2609. https://doi.org/10.3390/molecules25112609
Article
PubMed Central
CAS
Google Scholar
Sun J, Wang M, Cao J, Zhao Y, Jiang W (2010) Characterization of three novel alkaline serine proteases from tomato (Lycopersicum esculentum Mill.) Fruit and their potential application. J Food Biochem 34(5):1014–1031. https://doi.org/10.1111/j.1745-4514.2010.00346.x
Article
CAS
Google Scholar
Sun Q, Chen F, Geng F, Luo Y, Gong S, Jiang Z (2018) A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chem 245:570–577. https://doi.org/10.1016/j.foodchem.2017.10.113
Article
PubMed
CAS
Google Scholar
Suwannaphan S, Fufeungsombut E, Promboon A, Chim-Anage P (2017) A serine protease from newly isolated Bacillus sp. for efficient silk degumming, sericin degrading and colour bleaching activities. Int Biodeter Biodegr 117:141–149. https://doi.org/10.1016/j.ibiod.2016.12.009
Article
CAS
Google Scholar
Tavano OL, Berenguer-Murcia A, Secundo F, Fernandez-Lafuente R (2018) Biotechnological applications of proteases in food technology. Comp Rev Food Sci Food Safety 17:412–436. https://doi.org/10.1111/1541-4337.12326
Article
Google Scholar
Tekin A, Uzuner U, Sezen K (2020) Homology modeling and heterologous expression of highly alkaline subtilisin-like serine protease from Bacillus halodurans C-125. Biotechnol Lett. https://doi.org/10.1007/s10529-020-03025-6
Article
PubMed
Google Scholar
Thakur A, Putatunda C, Sharma R, Mehta R, Solanki P, Bhatia K (2020) Innovative techniques for improving microbial enzyme production. In: Microbial diversity, interventions and scope. Springer, pp 157–184. https://doi.org/10.1007/978-981-15-4099-8
Tigabu BM, Agide FD, Mohraz M, Nikfar S (2020) Atazanavir/ritonavir versus Lopinavir/ritonavir-based combined antiretroviral therapy (cART) for HIV-1 infection: a systematic review and meta-analysis. Afr Health Sci 20:91–101. https://doi.org/10.4314/ahs.v20i1.14
Article
PubMed
PubMed Central
Google Scholar
Uddin F, Rudin CM, Sen T (2020) CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol 10:1387. https://doi.org/10.3389/fonc.2020.01387
Article
PubMed
PubMed Central
Google Scholar
Verma R, Schwaneberg U, Roccatano D (2012) Computer-aided protein directed evolution: a review of web servers, databases and other computational tools for protein engineering. Comput Struct Biotechnol J 2(3):e201209008. https://doi.org/10.5936/csbj.201209008
Article
PubMed
PubMed Central
Google Scholar
Verma SK, Kaur S, Tevetia A, Chatterjee S, Sharma PC (2021) Structural characterization and functional annotation of microbial proteases mined from solid tannery waste metagenome. Biologia 76(6):1829–1842. https://doi.org/10.1007/s11756-021-00727-8
Article
CAS
Google Scholar
Vijayaraghavan P, Lazarus S, Vincent SGP (2014) De-hairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: biosynthesis and properties. Saudi J Biol Sci 21(1):27–34. https://doi.org/10.1016/j.sjbs.2013.04.010
Article
PubMed
CAS
Google Scholar
Villa ALV, Aragao MRS, Santos EPD, Mazotto AM, Zingali RB, de Souza EP, Vermelho AB (2013) Feather keratin hydrolysates obtained from microbial keratinases: effect on hair fiber. BMC Biotechnol 18:13–15. https://doi.org/10.1186/1472-6750-13-15
Article
CAS
Google Scholar
Vojcic L, Pitzler C, Körfer G, Jakob F, Martinez R, Maurer K-H, Schwaneberg U (2015) Advances in protease engineering for laundry detergents. New Biotechnol 32(6):629–634. https://doi.org/10.1016/j.nbt.2014.12.010
Article
CAS
Google Scholar
Waschkowitz T, Rockstroh S, Daniel R (2009) Isolation and characterization of metalloproteases with a novel domain structure by construction and screening of metagenomic libraries. Appl Environ Microbiol 75(8):2506–2516. https://doi.org/10.1128/AEM.02136-08
Article
PubMed
PubMed Central
CAS
Google Scholar
Weng M, Deng X, Bao W, Zhu L, Wu J, Cai Y, Jia Y, Zheng Z, Zou G (2015) Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation. Biochem Biophys Res Commun 465:580–586. https://doi.org/10.1016/j.bbrc.2015.08.063
Article
PubMed
CAS
Google Scholar
Xin X, Ambati RR, Cai Z, Lei B (2018) Purification and characterization of fibrinolytic enzyme from a bacterium isolated from soil. 3 Biotech 8:90. https://doi.org/10.1007/s13205-018-1115-4
Article
PubMed
PubMed Central
Google Scholar
Xu W, Shao R, Wang Z, Yan X (2015) Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis. Appl Biochem Biotechnol 175(6):3184–3194. https://doi.org/10.1007/s12010-015-1495-4
Article
PubMed
CAS
Google Scholar
Yang X, Cong H, Song J, Zhang J (2013) Heterologous expression of an aspartic protease gene from biocontrol fungus Trichoderma asperellum in Pichia pastoris. World J Microbiol Biotechnol 29(11):2087–2094
Article
CAS
Google Scholar
Yang LQ, Chen GY, Li Y, Zhang RP, Liu SQ, Sang P (2019) Insight derived from molecular dynamics simulation into dynamics and molecular motions of cuticle-degrading serine protease Ver112. J Biomol Struct Dyn 37:2004–2016. https://doi.org/10.1080/07391102.2018.1471418
Article
PubMed
CAS
Google Scholar
Yang H, Liu Y, Ning Y, Wang C, Zhang X, Weng P, Wu Z (2020) Characterization of an intracellular alkaline serine protease from Bacillus velezensis SW5 with fibrinolytic activity. Curr Microbiol 77:1610–1621. https://doi.org/10.1007/s00284-020-01977-6
Article
PubMed
CAS
Google Scholar
Yusuf I, Ahmad SA, Phang LY et al (2019) Effective production of keratinase by gellan gum-immobilised Alcaligenes sp. AQ05-001 using heavy metal-free and polluted feather wastes as substrates. 3 Biotech 9:32. https://doi.org/10.1007/s13205-018-1555-x
Article
PubMed
PubMed Central
Google Scholar
Zanutto-Elgui MR, Vieira JCS, do Prado DZ, Buzalaf MAR, de Magalhães PP, De Oliveira DE, Fleuri LF (2018) Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chem. https://doi.org/10.1016/j.foodchem.2018.11.119
Article
PubMed
Google Scholar
Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Therapy-Nucleic Acids 4:e264. https://doi.org/10.1038/mtna.2015.37
Article
CAS
Google Scholar
Zhang K, Duan X, Wu J (2016a) Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci Rep 6:27943. https://doi.org/10.1038/srep27943
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang RX, Gong JS, Dou WF et al (2016b) Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry. Chem Pap 70:1460–1470. https://doi.org/10.1515/chempap-2016-0086
Article
CAS
Google Scholar
Zhang S, Xu Z, Sun H, Sun L, Shaban M, Yang X et al (2019) Genome-wide identification of papain-like cysteine proteases in Gossypium hirsutum and functional characterization in response to Verticillium dahliae. Front Plant Sci 10:134. https://doi.org/10.3389/fpls.2019.00134
Article
PubMed
PubMed Central
Google Scholar
Zhao G, Ding L-L, Pan Z-H, Kong D-H, Hadiatullah H, Fan Z-C (2019) Proteinase and glycoside hydrolase production is enhanced in solid-state fermentation by manipulating the carbon and nitrogen fluxes in Aspergillus oryzae. Food Chem 271:606–613. https://doi.org/10.1016/j.foodchem.2018.07.199
Article
PubMed
CAS
Google Scholar
Zhao Y, Yu X, Li J (2020) Manipulation of immune-vascular crosstalk: new strategies towards cancer treatment. Acta Pharm Sin B 10:2018–2036. https://doi.org/10.1016/j.apsb.2020.09.014
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou C, Qin H, Chen X, Zhang Y, Xue Y, Ma Y (2018) A novel alkaline protease from alkaliphilic Idiomarina sp. C9–1 with potential application for eco-friendly enzymatic dehairing in the leather industry. Sci Rep 8:16467. https://doi.org/10.1038/s41598-018-34416-5
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou C, Zhou H, Li D, Zhang H, Wang H, Lu F (2020) Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709. Microb Cell Fact 19:45. https://doi.org/10.1186/s12934-020-01307-2
Article
PubMed
PubMed Central
CAS
Google Scholar