Molecular and physical characterization of grain hardness in European spring common wheat (Triticum aestivum L.)

Abstract

Grain hardness is the single most important trait in determining technological properties and end-use quality of wheat product. This trait is controlled by two genes (Pina—D1 and Pinb—D1) at the Hardness (Ha) locus. Soft endosperm kernels are characterized by the presence of alleles ‘a' in both genes (Pina-D1a and Pinb-D1a), while the medium hard and hard grain is the result of deletion in the Pina-D1 gene or single mutation of the Pinb-D1 gene. The aim of the current study was to determine the relationship between common wheat grain hardness and the presence of puroindoline genes. Eighty-one spring common wheat cultivars from Europe were analysed for grain hardness by SKCS (Single Kernel Characterization System) and Pin—D1 genes. The analysed genotypes were divided into three hardness classes: hard, medium and soft and they showed four allelic combinations in Pin-D1 genes. The SKCS results showed that hard wheat was the major type in European cultivars, whereas molecular analysis showed differential allelic combinations of puroindoline genes among these classes. The conducted analyses suggest that another major gene or other factors were influencing kernel texture.

This is a preview of subscription content, access via your institution.

Data availability

Materials and row data are available in Institute Of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin.

References

  1. Ayala M, Guzmán C, Alvarez JB, Peña RJ (2013) Characterization of genetic diversity of Puroindoline genes in Mexican wheat landraces. Euphytica 190(1):53–63. https://doi.org/10.1007/s10681-012-0773-2

    Article  Google Scholar 

  2. Ayala M, Guzmán C, Peña RJ, Alvarez JB (2016) Genetic diversity and molecular characterization of Puroindoline genes (Pina-D1 and Pinb-D1) in bread wheat landraces from Andalusia (Southern Spain). J Cereal Sci 71:61–65. https://doi.org/10.1016/j.jcs.2016.07.017

    CAS  Article  Google Scholar 

  3. Bhave M, Morris CF (2008) Molecular genetics of Puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66(3):205–219. https://doi.org/10.1007/s11103-007-9263-7

    CAS  Article  PubMed  Google Scholar 

  4. Brites CM, Lourenço dos Santos CA, Bagulho AS, Beirão-da-Costa ML (2008) Effect of wheat Puroindoline alleles on functional properties of starch. Eur Food Res Technol 226:1205–1212. https://doi.org/10.1007/s00217-007-0711-z

    CAS  Article  Google Scholar 

  5. Capparelli R, Borriello G, Giroux MJ, Amoroso MG (2003) Puroindoline A-gene expression is involved in association of Puroindolines to starch. Theor Appl Genet 107(8):1463–1468. https://doi.org/10.1007/s00122-003-1392-z

    CAS  Article  PubMed  Google Scholar 

  6. Chang C, Zhang H, Xu J, Li W, Liu G, You M, Li B (2006) Identification of allelic variations of Puroindoline genes controlling grain hardness in wheat using a modified denaturing PAGE. Euphytica 152(2):225–234. https://doi.org/10.1007/s10681-006-9204-6

    CAS  Article  Google Scholar 

  7. Chen F, He ZH, Xia XC, Xia LQ, Zhang XY, Lillemo M, Morris CF (2006) Molecular and biochemical characterization of Puroindoline a and b alleles in Chinese landraces and historical cultivars. Theor Appl Genet 112(3):400–409. https://doi.org/10.1007/s00122-005-0095-z

    CAS  Article  PubMed  Google Scholar 

  8. Chen F, Yu Y, Xia X, He Z (2007) Prevalence of a Novel Puroindoline b Allele in Yunnan Endemic Wheats (Triticum Aestivum ssp. yunnanense King). Euphytica 156(1–2):39–46. https://doi.org/10.1007/s10681-006-9347-5

    CAS  Article  Google Scholar 

  9. Cśoti I, Bakó A, Tamás L, Gárdonyi M (2005) Investigation of the starch-binding properties of wheat Friabilin. Acta Biologica Szegediensis 49(1–2):29–30

    Google Scholar 

  10. Dobraszczyk BJ, Whitworth MB, Vincent JFV, Khan AA (2002) Single kernel wheat hardness and fracture properties in relation to density and the modelling of fracture in wheat endosperm. J Cereal Sci 35(3):245–263. https://doi.org/10.1006/jcrs.2001.0399

    Article  Google Scholar 

  11. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  12. Dziki D, Laskowski J (2005) Wheat kernel physical properties and milling process. Acta Agrophys 6(1):59–71

    Google Scholar 

  13. Dziki D, Różyło R, Laskowski J (2011) Przemiał Pszenicy i Wpływ Twardości Ziarna Na Ten proces. Acta Agrophys 18(1):33–43

    Google Scholar 

  14. Eagles HA, Cane K, Eastwood RF, Hollamby GJ, Kuchel H, Martin PJ, Cornish GB (2006) Contributions of glutenin and Puroindoline genes to grain quality traits in southern Australian wheat breeding programs. Aust J Agr Res 57(2):179–186. https://doi.org/10.1071/ar05242

    CAS  Article  Google Scholar 

  15. Giroux MJ, Morris CF (1997) A glycine to serine change in Puroindoline b Is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95:857–864. https://doi.org/10.1007/s001220050636

    CAS  Article  Google Scholar 

  16. Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components Puroindoline a and B. Proc Natl Acad Sci USA 95(11):6262–6266. https://doi.org/10.1073/pnas.95.11.6262

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Giroux MJ, Talbert L, Habernicht DK, Lanning S, Hemphill A, Martin JM (2000) Association of Puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci 40:370–374. https://doi.org/10.2135/cropsci2000.402370x

    CAS  Article  Google Scholar 

  18. Giroux MJ, Sripo T, Gerhardt S, Sherwood J (2003) Puroindolines: their role in grain hardness and plant defence. Biotechnol Genet Eng 20(1):277–290. https://doi.org/10.1080/02648725.2003.10648047

    CAS  Article  Google Scholar 

  19. Greffeuille V, Abecassis J, Rousset M, Oury FX, Faye A, Bar L’Helgouac’h C, Lullien-Pellerin V, (2006) Grain characterization and milling behaviour of near-isogenic lines differing by hardness. Theor Appl Genet 114(1):1–12. https://doi.org/10.1007/s00122-006-0403-2

    CAS  Article  PubMed  Google Scholar 

  20. Grundas S (2004) Charakterystyka Właściwości Fizycznych Ziarniaków w Kłosach Pszenicy Zwyczajnej Triticum Aestivum L. Acta Agrophys 102(2):27–61

    Google Scholar 

  21. Ikeda TM, Ohnishi N, Nagamine T, Oda S, Hisatomi T, Yano H (2005) Identification of new Puroindoline genotypes and their relationship to flour texture among wheat cultivars. J Cereal Sci 41(1):1–6. https://doi.org/10.1016/j.jcs.2004.10.002

    CAS  Article  Google Scholar 

  22. Langner M, Salmanowicz BP (2009) Identification of puroindoline alleles in Polish wheat cultivars by molecular markers. Biul Inst Hod Aklim Rośl 253:93–101

    Google Scholar 

  23. Létang C, Samson MF, Lasserre TM, Chaurand M, Abécassis J (2001) Production of starch with very low protein content from soft and hard wheat flours by jet milling and air classification. Cereal Chem 79(4):535–543. https://doi.org/10.1094/cchem.2002.79.4.535

    Article  Google Scholar 

  24. Lillemo M, Morris CF (2000) A leucine to proline mutation in Puroindoline B is frequently present in hard wheats from Northern Europe. Theor Appl Genet 100(7):1100–1107. https://doi.org/10.1007/s001220051392

    CAS  Article  Google Scholar 

  25. Lillemo M, Chen F, Xia X, William M, Peña RJ, Trethowan R, He Z (2006) Puroindoline grain hardness alleles in CIMMYT bread wheat germplasm. J Cereal Sci 44(1):86–92. https://doi.org/10.1016/j.jcs.2006.03.004

    CAS  Article  Google Scholar 

  26. Ma X, Sajjad M, Wang J, Yang W, Sun J, Li X, Zhang A, Liu D (2017) Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biol 17:1–12. https://doi.org/10.1186/s12870-017-1101-8

    CAS  Article  Google Scholar 

  27. Martin JM, Hogg AC, Webster RW, Giroux MJ (2017) Creation and characterization of a double null Puroindoline genotype in spring wheat. Cereal Chem 94(5):805–810. https://doi.org/10.1094/cchem-04-17-0071-rw

    CAS  Article  Google Scholar 

  28. Mikulikova D (2007) The effect of Friabilin on wheat grain hardness. Czech J Genet Plant Breed 43(2):35–43

    CAS  Article  Google Scholar 

  29. Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647

    CAS  Article  Google Scholar 

  30. Morris CF, Lillemo M, Simeone MC, Giroux MJ, Babb SL, Kidwell KK (2001) Prevalence of Puroindoline grain hardness genotypes among historically significant North American spring and winter wheats. Crop Sci 41:218–228

    CAS  Article  Google Scholar 

  31. Nadolska-Orczyk A, Gasparis S, Orczyk W (2009) The determinants of grain texture in cereals. J Appl Genet 50(3):185–197. https://doi.org/10.1007/bf03195672

    CAS  Article  PubMed  Google Scholar 

  32. Osborne BG, Henry RJ, Southan MD (2007) Assessment of commercial milling potential of hard wheat by measurement of the rheological properties of whole grain. J Cereal Sci 45(2):122–127. https://doi.org/10.1016/j.jcs.2006.07.005

    Article  Google Scholar 

  33. Oury FX, Lasme P, Michelet C, Rousset M, Abecassis J, Lullien-Pellerin V (2015) Relationships between wheat grain physical characteristics studied through near-isogenic lines with distinct Puroindoline-b Allele. Theor Appl Genet 128(5):913–929. https://doi.org/10.1007/s00122-015-2479-z

    CAS  Article  PubMed  Google Scholar 

  34. Pasha I, Anjum FM, Morris CF (2010) Grain hardness: a major determinant of wheat quality. Food Sci Technol Int 16(6):511–522. https://doi.org/10.1177/1082013210379691

    CAS  Article  PubMed  Google Scholar 

  35. Pauly A, Pareyt B, Fierens E, Delcour JA (2013) Wheat (Triticum Aestivum L. and T. Turgidum L. ssp. Durum) Kernel hardness: I. current view on the role of Puroindolines and polar lipids. Compr Rev Food Sci Food Saf 12(4):413–26. https://doi.org/10.1111/1541-4337.12019

    CAS  Article  PubMed  Google Scholar 

  36. Pujol R, Létang C, Lempereur I, Chaurand M, Mabille F, Abecassis J (2000) Description of a Micromill with instrumentation for measuring grinding characteristics of wheat grain. Cereal Chem 77(4):421–427. https://doi.org/10.1094/cchem.2000.77.4.421

    CAS  Article  Google Scholar 

  37. Turnbull KM, Rahman S (2002) Endosperm texture in wheat. J Cereal Sci 36(3):327–337. https://doi.org/10.1006/jcrs.2002.0468

    CAS  Article  Google Scholar 

Download references

Funding

Funding information is not applicable.

Author information

Affiliations

Authors

Contributions

Research conception Al.N, M.T.M S.O., performing analysis Al.N, data analysis Al.N, S.O., manuscript preparation Al.N, S.O, Ag.N.

Corresponding author

Correspondence to Sylwia Okoń.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Statement of humans and/or animals rights

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

13205_2021_2897_MOESM1_ESM.tif

Supplementary file1 Supplementary Figure 1. PCR product of primer set H1 specific for Pina-D1a. Lines: M–100 bp DNA Ladder Plus, 1–Kamelia, 2–Nimfa, 3–Ostka Smolicka, 4–Rusałka, 5–Serenada, 6–Koksa, 7–Korynta, 8–Nawra, 9–Harenda, 10–Izera, 11–Parabola, 12–Łagwa, 13–Żura, 14–Rospuda, 15–Zadra, 16–Werbena, 17–Arabella, 18–Goplana, 19–Kandela, 20–KWS Mistral, 21–KWS Scirocco, 22–KWS Solanus, 23–Monsun, 24–Taifun, 25–Trappe, 26–Vanék, 27–Conil, 28–Escacena, 29–Jerezano, 30–Tejada (TIF 457 kb)

13205_2021_2897_MOESM2_ESM.tif

Supplementary file2 Supplementary Figure 2 PCR product of primer set H4 specific for Pinb-D1a. Lines: M – 100 bp DNA Ladder Plus, 1–Kamelia, 2–Nimfa, 3–Ostka Smolicka, 4–Rusałka, 5–Serenada, 6 –Koksa, 7–Korynta, 8–Nawra, 9–Harenda, 10–Izera, 11–Parabola, 12–Łagwa, 13–Żura, 14–Rospuda, 15–Zadra, 16–Werbena, 17–Arabella, 18–Goplana, 19–Kandela (TIF 294 kb)

13205_2021_2897_MOESM3_ESM.tif

Supplementary file3 Supplementary Figure 3 PCR product of primer set H5 specific for Pinb-D1b. Lines: M – 100 bp DNA Ladder Plus, 1–Kamelia, 2–Nimfa, 3–Ostka Smolicka, 4–Rusałka, 5–Serenada, 6–Koksa, 7–Korynta, 8–Nawra, 9–Harenda, 10–Izera, 11–Parabola, 12–Łagwa, 13–Żura, 14–Rospuda, 15–Zadra, 16–Werbena, 17–Arabella, 18–Goplana, 19–Kandela (TIF 364 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nucia, A., Okoń, S., Tomczyńska-Mleko, M. et al. Molecular and physical characterization of grain hardness in European spring common wheat (Triticum aestivum L.). 3 Biotech 11, 345 (2021). https://doi.org/10.1007/s13205-021-02897-3

Download citation

Keywords

  • European spring common wheat (Triticum aestivum L.)
  • Kernel hardness
  • SKCS
  • Puroindoline genes
  • PCR