Skip to main content
Log in

Overexpression of Cerasus humilis ChAOX2 improves the tolerance of Arabidopsis to salt stress

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Alternative oxidase (AOX) has a well-established involvement in plant growth and stress tolerance in many studies. In this study, we isolated and characterized the AOX2 from Cerasus humilis. The ChAOX2 Open Reading Frame (ORF) contains 1029 nucleotides and encodes 342 amino acid residues. The inferred amino acid sequence of ChAOX2 shared the highest sequence similarity with a homolog from Prunus yedoensis. The ChAOX2 transcripts were relatively abundant in the old leaves and significantly up-regulated by salt stress. Subcellular localization analysis showed that ChAOX2 was located in the mitochondria. We transformed ChAOX2 into wild-type Arabidopsis thaliana and found that compared with wild-type and aox mutant lines, heterotopic expression of ChAOX2 increased proline content, and peroxidase and superoxide dismutase activities, while decreasing relative conductivity and the reactive oxygen species level. Further, the ratio of alternate respiration to the total respiration in plants that overexpressed ChAOX2 was significantly higher than that in wild-type and mutant plants under salt stress. These results indicate that ChAOX2 plays a key role in salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aken OV, Giraud E, Clifton R, Whelan J (2009) Alternative oxidase: a target and regulator of stress responses. Physiol Plant 137:354–361

    Article  PubMed  CAS  Google Scholar 

  • Analin B, Mohanan A, Bakka K, Challabathula D (2020) Cytochrome oxidase and alternative oxidase pathways of mitochondrial electron transport chain are important for the photosynthetic performance of pea plants under salinity stress conditions. Plant Physiol Biochem 154:248–259

    Article  CAS  PubMed  Google Scholar 

  • Arnholdt-Schmitt B (2017) Respiration traits as novel markers for plant robustness under the threat of climate change: a protocol for validation, vol 1670. In Plant respiration and internal oxygen Humana Press, New York

    Google Scholar 

  • Arnholdt-Schmitt B, Costa JH, Melo DFD (2006) AOX—a functional marker for efficient cell reprogramming under stress. Trends Plant Sci 11:281–287

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Cavalcanti J, Oliveira GM, Saraiva KDDC, Torquato JPP, Maia IG, Dirce FDM, Costa JH (2013) Identification of duplicated and stress-inducible AOX2b gene co-expressed with AOX1 in species of the Medicago genus reveals a regulation linked to gene rearrangement in leguminous genomes. J Plant Physiol 170:1609–1619

    Article  CAS  PubMed  Google Scholar 

  • Chau CF, Wu SH (2006) The development of regulations of Chinese herbal medicines for both medicinal and food uses. Trends Food Sci Tech 17:313–323

    Article  CAS  Google Scholar 

  • Clifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH, Day DA, Whelan J (2005) Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol 58:193–212

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium—mediated transformation of Arabidopsis thaliana. The Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cong J, Li KQ, Xu XY, Zhang HP, Chen HX, Chen YH, Hao J, Wang Y, Huang XS, Zhang SL (2017) A novel NAC transcription factor, PbeNAC1, of Pyrus betulifolia confers cold and drought tolerance via interacting with PbeDREBs and activating the expression of dtress-responsive genes. Front Plant Sci 8:1049

    Article  Google Scholar 

  • Costa JH, Mota EF, Cambursano MV, Lauxmann MA, Oliveira LMND, Lima MDGS, Orellano EG, Melo DFD (2010) Stress-induced co-expression of two alternative oxidase (VuAox1 and 2b) genes in Vigna unguiculata. J Plant Physiol 167:561–570

    Article  CAS  PubMed  Google Scholar 

  • Ederli L, Morettini R, Borgogni A, Wasternack C, Miersch O, Reale L, Ferranti F, Tosti N, Pasqualini S (2006) Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol 142:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng H, Guan D, Sun K, Wang Y, Zhang T, Wang R (2013) Expression and signal regulation of the alternative oxidase genes under abiotic stresses. Acta Bioch Bioph Sin 45:985–994

    Article  CAS  Google Scholar 

  • Frederico AM, Zavattieri MA, Campos MD, Cardoso HG, Arnholdt-Schmitt B (2010) The gymnosperm Pinus pinea contains both AOX gene subfamilies, AOX1 and AOX2. Physiol Plant 137:566–577

    Article  CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gong Q, Li S, Zheng Y, Duan H, Lin H (2020) SUMOylation of MYB30 enhances salt tolerance by elevating alternative respiration via transcriptionally upregulating AOX1a in Arabidopsis. Plant J 102:1157–1171

    Article  CAS  PubMed  Google Scholar 

  • He L, Wu YH, Zhao Q, Wang B, Liu QL, Zhang L (2018) Chrysanthemum DgWRKY2 gene enhances tolerance to salt stress in transgenic chrysanthemum. Int J Mol Sci 19:2062

    Article  PubMed Central  CAS  Google Scholar 

  • Hu WH, Yan XH, Yu JQ (2017) Importance of the mitochondrial alternative oxidase (AOX) pathway in alleviating photoinhibition in cucumber leaves under chilling injury and subsequent recovery when leaves are subjected to high light intensity. J Hortic Sci Biotechnol 92:31–38

    Article  CAS  Google Scholar 

  • Hu W, Yan X, He Y, Ye X (2018) Role of alternative oxidase pathway in protection against drought-induced photoinhibition in pepper leaves. Photosynthetica 56:1297–1303

    Article  CAS  Google Scholar 

  • Jacoby RP, Taylor NL, Millar AH (2011) The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci 16:614–623

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Qiu Y, Hu Y, Yu D (2016) Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Front Plant Sci 7:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CR, Liang DD, Xu RF, Li H, Yang JB (2013) Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L. Genet Mol Res 12:5424–5432

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Tian M, Zhang H, Li X, Wang Y, Xia X, Zhou J, Zhou Y, Yu J, Shi K, Klessig DF (2015) Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato. New Phytol 205:1296–1307

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Bo O, Zhang J, Wang T, Li H, Zhang Y, Yu C, Ye Z (2012) Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS ONE 7:e50785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Gong Q, He J, Sun X, Zhou H (2020) PpAOX regulates ER stress tolerance in Physcomitrella patens. J Plant Physiol 251:153218

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Millar AH, Hoefnagel MHN, Day DA, Wiskich JT (1996) Specificity of the organic acid activation of alternative oxidase in plant mitochondria. Plant Physiol 111:613–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millenaar FF, Benschop JJ, Lambers WH (1998) The role of the alternative oxidase in stabilizing the in Vivo reduction state of the ubiquinone pool and the activation state of the alternative oxidase. Plant Physiol 118:599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu XP, Aryal N, Du JM, Du JJ, Biotechnology (2015) Oil content and fatty acid composition of the kernels of 31 genotypes of Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.]. J Hortic Sci Biotech 90:525–529

    Article  CAS  Google Scholar 

  • Olsen LF, Issinger OG, Guerra B (2013) The Yin and Yang of redox regulation. Redox Rep 18:245–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu X, Xin L, Tan T, Fu F, Qin G, Lin H (2015) Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. Ann Bot 116:583–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puyang X, An M, Han L, Zhang X (2015) Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotox Environ Safe 117:96–106

    Article  CAS  Google Scholar 

  • Rogov AG, Zvyagilskaya RA (2015) Physiological role of alternative oxidase (from yeasts to plants). Biochemistry 80:400–407

    CAS  PubMed  Google Scholar 

  • Saha B, Borovskii G, Panda SK (2016) Alternative oxidase and plant stress tolerance. Plant Signal Behav 11:e1256530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith CA, Melino VJ, Sweetman C, Soole KL (2009) Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana. Physiol Plantarum 137:459–472

    Article  CAS  Google Scholar 

  • Smith C, Barthet M, Melino V, Smith P, Day D, Soole K (2011) Alterations in the mitochondrial alternative NAD (P) H dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress. Plant Cell Physiol 52:1222–1237

    Article  CAS  PubMed  Google Scholar 

  • Sun LN, Wang F, Wang JW, Sun LJ, Gao WR, Song XS (2019) Overexpression of the ChVDE gene, encoding a violaxanthin de-epoxidase, improves tolerance to drought and salt stress in transgenic Arabidopsis. Biotech 9:197

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turk H (2019) Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Plant Physiol Bioch 141:415–422

    Article  CAS  Google Scholar 

  • Umbach AL, Gonzàlez-Meler MA, Sweet CR, Siedow JN (2002) Activation of the plant mitochondrial alternative oxidase: insights from site-directed mutagenesis. BBA - Bioenergetics 1554:118–128

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe G (2013) Alternative Oxidase: A mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Biol 48:703–734

    Article  CAS  Google Scholar 

  • Vanlerberghe GC, Cvetkovska M, Wang J (2009) Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? Physiol Plantarum 137:392–406

    Article  CAS  Google Scholar 

  • Wang K, Zhong M, Wu YH, Bai ZY, Liang QY, Liu QL, Pan YZ, Zhang L, Jiang BB, Jia Y (2017) Overexpression of a chrysanthemum transcription factor gene DgNAC1 improves the salinity tolerance in chrysanthemum. Plant Cell Rep 36:1–11

    Article  CAS  Google Scholar 

  • Wu G, Li S, Li X, Liu Y, Zhao S, Liu B, Zhou H, Lin H (2019) A functional alternative oxidase modulates plant salt tolerance in Physcomitrella patens. Plant Cell Physiol 60:1829–1841

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Yuan S, Zhang D-W, Lv X, Lin H-H (2012) The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene. J Exp Bot 63:5705–5716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873–5885

    Article  CAS  PubMed  Google Scholar 

  • Zhang DW, Yuan S, Xu F, Zhu F, Yuan M, Ye HX, Guo HQ, Lv X, Yin Y, Lin HH (2016) Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis. Plant Cell Environ 39:12–25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (31901660), Heilongjiang Provincial doctoral program (LBH-Z17214), Special Project of Science and Technology Basic Resources Investigation (2019FY100502-5) and the Innovation Project of State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University). This research was supported by Fundamental Research Funds for the Central Universities (Grant 2572018CG02).

Author information

Authors and Affiliations

Authors

Contributions

XSS, XYZ, and LJS conceived and designed the study. LJS carried out the main experiments, XSS, and LJS wrote the manuscript, XYZ cloned the ChAOX gene. JR and SPY analyzed the data. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xi Yang Zhao or Xing Shun Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L.J., Zhao, X.Y., Ren, J. et al. Overexpression of Cerasus humilis ChAOX2 improves the tolerance of Arabidopsis to salt stress. 3 Biotech 11, 316 (2021). https://doi.org/10.1007/s13205-021-02871-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02871-z

Keywords

Navigation