Skip to main content
Log in

Extraction of bioactive compounds from Senecio brasiliensis using emergent technologies

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Several plant species synthesize biologically active secondary metabolites. Pyrrolizidine alkaloids are a large group of biotoxins produced by thousands of plant species to protect against the attack of insects and herbivores, but they are highly toxic for humans and animals. In this study, extracts from the aerial part of Senecio brasiliensis were obtained using different technologies: ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and microwave hydrodiffusion and gravity (MHG). The study aimed to evaluate the effectiveness of these technologies for the extraction of chemical compounds found in this plant, focusing on two pyrrolizidine alkaloids: integerrimine and senecionine. Influential parameters on yield and chemical composition were also evaluated: for UAE and MHG, temperature and pressure; for PLE, temperature, and percentage of ethanol. All the extraction techniques were efficient for the extraction of integerrimine and senecionine. The UAE and PLE stood out for the higher yields and number of compounds. The PLE presented a maximum yield of 18.63% for the matrix leaf and the UAE a maximum yield of 11.82% for the same matrix. These two techniques also stood out in terms of the number of compounds, once 36 different compounds were found via PLE and 17 via UAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barrales FM, Silveira P, de Barbosa PPM et al (2018) Recovery of phenolic compounds from citrus by-products using pressurized liquids—an application to orange peel. Food Bioprod Process 112:9–21

    CAS  Google Scholar 

  • Barretto D, Vootla S (2018) Gc-Ms analysis of bioactive compounds and antimicrobial activity of Cryptococcus rajasthanensis Ky627764 isolated from bombyx mori gut microflora. Int J Adv Res 6:525–538

    Google Scholar 

  • Benmoussa H, Elfalleh W, He S et al (2018) Microwave hydrodiffusion and gravity for rapid extraction of essential oil from Tunisian cumin (Cuminum cyminum L.) seeds: optimization by response surface methodology. Ind Crops Prod 124:633–642

    CAS  Google Scholar 

  • Bousbia N, Abert M, Ferhat MA et al (2009) Comparison of two isolation methods for essential oil from rosemary leaves: hydrodistillation and microwave hydrodiffusion and gravity. Food Chem 114:355–362

    CAS  Google Scholar 

  • Bülent Köse Y, Iscan G, Demirci B (2016) Antimicrobial activity of the essential oils obtained from flowering aerial parts of Centaurea lycopifolia Boiss. et Kotschy and Centaurea cheirolopha (Fenzl) Wagenitz from Turkey. J Essent Oil Bear Plants 19:762–768

    Google Scholar 

  • Carabias-Martínez R, Rodríguez-Gonzalo E, Revilla-Ruiz P, Hernández-Méndez J (2005) Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A 1089:1–17

    PubMed  Google Scholar 

  • Castejón N, Luna P, Señorans FJ (2017) Ultrasonic removal of mucilage for pressurized liquid extraction of omega-3 rich oil from chia seeds (Salvia hispanica L.). J Agric Food Chem 65:2572–2579

    PubMed  Google Scholar 

  • Casuga FP, Castillo AL, Corpuz MJAT (2016) GC–MS analysis of bioactive compounds present in different extracts of an endemic plant Broussonetia luzonica (Blanco) (Moraceae) leaves. Asian Pac J Trop Biomed 6:957–961

    CAS  Google Scholar 

  • Chemat F, Zill-e-Huma, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835

    CAS  PubMed  Google Scholar 

  • Chemat F, Rombaut N, Meullemiestre A et al (2017) Review of green food processing techniques. Preservation, transformation, and extraction. Innov Food Sci Emerg Technol 41:357–377

    CAS  Google Scholar 

  • Chen M, Du Y, Zhu G et al (2018) Action of six pyrethrins purified from the botanical insecticide pyrethrum on cockroach sodium channels expressed in Xenopus oocytes. Pestic Biochem Physiol 151:82–89

    CAS  PubMed  Google Scholar 

  • Cheong MW, Tan AAA, Liu SQ et al (2013) Pressurised liquid extraction of volatile compounds in coffee bean. Talanta 115:300–307

    CAS  PubMed  Google Scholar 

  • Chhouk K, Wahyudiono KH, Goto M (2018) Efficacy of supercritical carbon dioxide integrated hydrothermal extraction of Khmer medicinal plants with potential pharmaceutical activity. J Environ Chem Eng 6:2944–2956

    CAS  Google Scholar 

  • Confortin TC, Todero I, Canabarro NI et al (2019) Supercritical CO2 extraction of compounds from different aerial parts of Senecio brasiliensis: mathematical modeling and effects of parameters on extract quality. J Supercrit Fluids 153:104589

    CAS  Google Scholar 

  • Cui Q, Wang LT, Liu JZ et al (2017) Rapid extraction of Amomum tsao-ko essential oil and determination of its chemical composition, antioxidant and antimicrobial activities. J Chromatogr B Anal Technol Biomed Life Sci 1061–1062:364–371

    Google Scholar 

  • Das PR, Eun JB (2018) A comparative study of ultra-sonication and agitation extraction techniques on bioactive metabolites of green tea extract. Food Chem 253:22–29

    CAS  PubMed  Google Scholar 

  • De Souza RR, Bretanha LC, Dalmarco EM et al (2015) Modulatory effect of Senecio brasiliensis (Spreng) Less. in a murine model of inflammation induced by carrageenan into the pleural cavity. J Ethnopharmacol 168:373–379

    PubMed  Google Scholar 

  • Elias F, Latorre AO, Pípole F et al (2011) Haematological and immunological effects of repeated dose exposure of rats to integerrimine N-oxide from Senecio brasiliensis. Food Chem Toxicol 49:2313–2319

    CAS  PubMed  Google Scholar 

  • Farias CAA, Moraes DP, Lazzaretti M et al (2021) Microwave hydrodiffusion and gravity as pretreatment for grape dehydration with simultaneous obtaining of high phenolic grape extract. Food Chem 337:127723

    CAS  PubMed  Google Scholar 

  • Ferreira DF, Lucas BN, Voss M et al (2020) Solvent-free simultaneous extraction of volatile and non-volatile antioxidants from rosemary (Rosmarinus officinalis L.) by microwave hydrodiffusion and gravity. Ind Crops Prod 145:112094

    CAS  Google Scholar 

  • Filly A, Fernandez X, Minuti M et al (2014) Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale. Food Chem 150:193–198

    CAS  PubMed  Google Scholar 

  • Foo LW, Salleh E, Nur S, Mamat H (2015) P-53: extraction and qualitative analysis of piper betle leaves for antimicrobial activities. Int J Eng Technol Sci Res 2:1–8

    Google Scholar 

  • Gallo M, Formato A, Ianniello D et al (2017) Supercritical fluid extraction of pyrethrins from pyrethrum flowers (Chrysanthemum cinerariifolium) compared to traditional maceration and cyclic pressurization extraction. J Supercrit Fluids 119:104–112

    CAS  Google Scholar 

  • Goltz C, Ávila S, Barbieri JB et al (2018) Ultrasound-assisted extraction of phenolic compounds from Macela (Achyrolcine satureioides) extracts. J Supercrit Fluids 115:253–262

    Google Scholar 

  • Gonzalez CP, Vega RS, González-Chávez M et al (2013) Anti-inflammatory activity and composition of Senecio salignus Kunth. Biomed Res Int 2013:814693

    PubMed  Google Scholar 

  • Guo Y, Ma Z, Kou H et al (2013) Synergistic effects of pyrrolizidine alkaloids and lipopolysaccharide on preterm delivery and intrauterine fetal death in mice. Toxicol Lett 221:212–218

    CAS  PubMed  Google Scholar 

  • Hirondart M, Rombaut N, Fabiano-Tixier AS et al (2020) Comparison between pressurized liquid extraction and conventional Soxhlet extraction for rosemary antioxidants, yield, composition, and environmental footprint. Foods 9:584

    CAS  PubMed Central  Google Scholar 

  • Hossain MB, Barry-Ryan C, Martin-Diana AB, Brunton NP (2011) Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.), marjoram (Origanum majorana L.) and oregano (Origanum vulgare L.) using response surface methodology. Food Chem 126:339–346

    CAS  Google Scholar 

  • Kaczyński P, Łozowicka B (2020) A novel approach for fast and simple determination pyrrolizidine alkaloids in herbs by ultrasound-assisted dispersive solid phase extraction method coupled to liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 187:113351

    PubMed  Google Scholar 

  • Karam FSC, Soares MP, Haraguchi M et al (2004) Aspectos epidemiológicos da seneciose na região sul do Rio Grande do Sul. Pesqui Vet Bras 24:191–198

    Google Scholar 

  • Kopp T, Salzer L, Abdel-Tawab M, Mizaikoff B (2020) Efficient extraction of pyrrolizidine alkaloids from plants by pressurised liquid extraction—a preliminary study. Planta Med 86:85–90

    CAS  PubMed  Google Scholar 

  • Lee PS, Shin DH, Lee KM et al (2007) Effects of guanosine on the pharmacokinetics of acriflavine in rats following the administration of a 1:1 mixture of acriflavine and guanosine, a potential antitumor agent. Arch Pharm Res 30:372–380

    CAS  PubMed  Google Scholar 

  • López-Hortas L, Conde E, Falqué E, Domínguez H (2016) Flowers of Ulex europaeus L.—comparing two extraction techniques (MHG and distillation). Comptes Rendus Chim 19:718–725

    Google Scholar 

  • Macedo GE, Gomes KK, Rodrigues NR et al (2017) Senecio brasiliensis impairs eclosion rate and induces apoptotic cell death in larvae of Drosophila melanogaster. Comp Biochem Physiol Part C Toxicol Pharmacol 198:45–57

    CAS  Google Scholar 

  • Machado APDF, Pasquel-Reátegui JL, Barbero GF, Martínez J (2015) Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: a comparison with conventional methods. Food Res Int 77:675–683

    CAS  Google Scholar 

  • Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703:8–18

    CAS  PubMed  Google Scholar 

  • Pereira DTV, Tarone AG, Cazarin CBB et al (2019) Pressurized liquid extraction of bioactive compounds from grape marc. J Food Eng 240:105–113

    CAS  Google Scholar 

  • Pilati C, Barros CSL (2007) Intoxicação experimental por Senecio brasiliensis (Asteraceae) em eqüinos. Pesqui Vet Bras 27:287–296

    Google Scholar 

  • Prat D, Wells A, Hayler J et al (2015) CHEM21 selection guide of classical- and less classical-solvents. Green Chem 18:288–296

    Google Scholar 

  • Ratmanova NK, Andreev IA, Leontiev AV et al (2020) Strategic approaches to the synthesis of pyrrolizidine and indolizidine alkaloids. Tetrahedron 76:131031

    CAS  Google Scholar 

  • Sallet D, Souza PO, Fischer LT et al (2019) Ultrasound-assisted extraction of lipids from Mortierella isabellina. J Food Eng 242:1–7

    CAS  Google Scholar 

  • Sandini TM, Udo MSB, Spinosa HDS (2013) Senecio brasiliensis e alcaloides pirrolizidínicos: toxicidade em animais e na saúde humana. Biotemas 26:83–92

    Google Scholar 

  • Santos KA, Gonçalves JE, Cardozo-Filho L, da Silva EA (2019a) Pressurized liquid and ultrasound-assisted extraction of α-bisabolol from candeia (Eremanthus erythropappus) wood. Ind Crops Prod 130:428–435

    CAS  Google Scholar 

  • Santos KA, Klein EJ, da Silva C et al (2019b) Extraction of vetiver (Chrysopogon zizanioides) root oil by supercritical CO2, pressurized-liquid, and ultrasound-assisted methods and modeling of supercritical extraction kinetics. J Supercrit Fluids 150:30–39

    CAS  Google Scholar 

  • Setyaningsih W, Saputro IE, Palma M, Barroso CG (2016) Pressurized liquid extraction of phenolic compounds from rice (Oryza sativa) grains. Food Chem 192:452–459

    CAS  PubMed  Google Scholar 

  • Sharayei P, Azarpazhooh E, Zomorodi S, Ramaswamy HS (2019) Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. Lwt 101:342–350

    CAS  Google Scholar 

  • Soquetta MB, de Terra LM, Bastos CP (2018) Green technologies for the extraction of bioactive compounds in fruits and vegetables. CYTA J Food 16:400–412

    CAS  Google Scholar 

  • Takshak S, Agrawal SB (2019) Defense potential of secondary metabolites in medicinal plants under UV-B stress. J Photochem Photobiol B Biol 193:51–88

    CAS  Google Scholar 

  • Thakur M, Bhattacharya S, Khosla PK, Puri S (2019) Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12:1–12

    Google Scholar 

  • Toma W, Trigo JR, Bensuaski de Paula AC, Monteiro Souza Brito AR (2004) Modulation of gastrin and epidermal growth factor by pyrrolizidine alkaloids obtained from Senecio brasiliensis in acute and chronic induced gastric ulcers. Can J Physiol Pharmacol 82:319–325

    CAS  PubMed  Google Scholar 

  • Trigo JR, Leal IR, Matzenbacher NI, Lewinsohn TM (2003) Chemotaxonomic value of pyrrolizidine alkaloids in southern Brazil Senecio (Senecioneae: Asteraceae). Biochem Syst Ecol 31:1011–1022

    CAS  Google Scholar 

  • Trojanowska A, Tsibranska I, Dzhonova D et al (2019) Ultrasound-assisted extraction of biologically active compounds and their successive concentration by using membrane processes. Chem Eng Res Des. https://doi.org/10.1016/j.cherd.2019.05.018

    Article  Google Scholar 

  • Viganó J, Brumer IZ, de Braga PAC et al (2016) Pressurized liquids extraction as an alternative process to readily obtain bioactive compounds from passion fruit rinds. Food Bioprod Process 100:382–390

    Google Scholar 

  • Wei YQ, Sun MM, Fang HY (2019) Dienzyme-assisted salting-out extraction of flavonoids from the seeds of Cuscuta chinensis Lam . Ind Crops Prod 127(232):236

    Google Scholar 

  • Wiedenfeld H, Edgar J (2011) Toxicity of pyrrolizidine alkaloids to humans and ruminants. Phytochem Rev 10:137–151

    CAS  Google Scholar 

  • Xu J, Wang W, Yang X et al (2019) Pyrrolizidine alkaloids: an update on their metabolism and hepatotoxicity mechanism. Liver Res 3:176–184

    Google Scholar 

  • Yu HB, Ding LF, Wang Z, Shi LX (2013) Study on extraction of polyphenol from grape peel microwave-assisted activity. Adv Mater Res 864–867:520–525

    Google Scholar 

  • Zaibunnisa AH, Norashikin S, Mamot S, Osman H (2009) An experimental design approach for the extraction of volatile compounds from turmeric leaves (Curcuma domestica) using pressurised liquid extraction (PLE). LWT Food Sci Technol 42:233–238

    CAS  Google Scholar 

  • Zakaria MB, Vijayasekaran K, Ilham Z, Muhamad NA (2014) Anti-inflammatory activity of Calophyllum inophyllum fruits extracts. Procedia Chem 13:218–220

    Google Scholar 

  • Zaynab M, Fatima M, Abbas S et al (2018) Role of secondary metabolites in plant defense against pathogens. Microb Pathog 124:198–202

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council for Scientific and Technological Development (CNPq) under Grant [number 308936/2017-5; 428180/2018-3; 306241/2020-0]; Coordination for the Improvement of Higher Education Personnel (CAPES) under Grant [number 001]; and Research Support Foundation of the State of Rio Grande do Sul (FAPERGS) under Grant [number 16/2551-0000522-2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus V. Tres.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest regarding this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Confortin, T.C., Todero, I., Luft, L. et al. Extraction of bioactive compounds from Senecio brasiliensis using emergent technologies. 3 Biotech 11, 284 (2021). https://doi.org/10.1007/s13205-021-02845-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02845-1

Keywords

Navigation