Skip to main content
Log in

Biotechnological approaches in management of oomycetes diseases

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Plant pathogenic oomycetes cause significant impact on agriculture and, therefore, their management is utmost important. Though conventional methods to combat these pathogens (resistance breeding and use of fungicides) are available but these are limited by the availability of resistant cultivars due to evolution of new pathogenic races, development of resistance in the pathogens against agrochemicals and their potential hazardous effects on the environment and human health. This has fuelled a continual search for novel and alternate strategies for management of phytopathogens. The recent advances in oomycetes genome (Phytophthora infestans, P. ramorum, P. sojae, Pythium ultimum, Albugo candida etc.) would further help in understanding host–pathogen interactions essentially needed for designing effective management strategies. In the present communication the novel and alternate strategies for the management of oomycetes diseases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ah- Fong A, Judelson HS (2003) Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Mol Microbiol 50:487–494

    PubMed  Google Scholar 

  • Ah-Fong AMV, Bormann-Chung CA, Judelson HS (2008) Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small interfering RNAs. Fungal Genet Biol 45(8):1197–1205

    CAS  PubMed  Google Scholar 

  • Aleza P, Juarez J, Ollitrault P, Navarro L (2010) Polyembryony in non-apomictic citrus genotypes. Ann Bot 106:533–545

    PubMed  PubMed Central  Google Scholar 

  • Andreassi JL, Gutteridge S, Pember SO, Sweigard JA (2013) Detection and screening method and materials useful in performance thereof. International Patent No. Wo2013009971. World Intellactual Property Organization, Geneva

  • Austin S, Helgeson JP, Wettstein (1987) Interspecific somatic fusions between Solanum brevidens and S. tuberosum. In: Von D and Chua NH (eds) Plant molecular biology. Proceedings of NATO advanced study institute series A: life sciences (140). Carlsberg Lab., Copenhagen, Denmark, pp 209–222

  • Avrova AO, Boevink PC, Young V, Grenvilla-Briggs LJ, van West P, Birch PRJ, Whisson SC (2008) A novel Phytophthora infestans haustorium-specific membrane protein is required for infection in potato. Cell Microbiol 10(11):2271–2284

    CAS  PubMed  Google Scholar 

  • Ballvora A, Ercolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/ NBS/LRR class of plant resistant genes. Plant J 30:361–371

    CAS  PubMed  Google Scholar 

  • Barquero M, Gomez L, Brenes A (2005) Resistance to late blight (Phytophthora infestans) in promising potato clones in Costa Rica. Agron Costarric 29(3):31–45

    Google Scholar 

  • Bassan MM, Mourao-Filho F, de AA, Mendes BM J, Freire BFS, Cantuarias- Aviles TE, Beltrame AB (2010) Reaction of citrus somatic hybrids to the infection by Phytophthora nicotianae. Rev Bras Frutic 32(2): 429–435

  • Beakes GW, Glocking SL, Sekimoto S (2012) The evolutionary phylogeny of the oomycete “fungi.” Protoplasma 249:3–19

    PubMed  Google Scholar 

  • Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon AF, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet 120:163–176

    PubMed  Google Scholar 

  • Bittner RJ, Sweigard JA, Mila AL (2017) Assessing the resistance potential of Phytophthora nicotianae, the causal agent of black shank of tobacco, to oxathiapiprolin with laboratory mutants. Crop Prot 102:63–71

    CAS  Google Scholar 

  • Bittner-Eddy PD, Crute IR, Holub EB, Beynon JL (2000) RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J 21:177–188

    CAS  PubMed  Google Scholar 

  • Blanco FA, Judelson HS (2005) A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56(3):638–648

    CAS  PubMed  Google Scholar 

  • Borhan MH, Gunn N, Cooper A, Gulden S, Tör M, Rimmer SR, Holub EB (2008) WRR4 encodes a TIR-NB-LRR protein that confers broadspectrum white rust resistance in Arabidopsis thaliana to four physiological races of Albugo candida. Mol Plant Microbe Interact 21:757–768

    CAS  PubMed  Google Scholar 

  • Bos JI, Armstrong MR, Gilroy EM, Boevink PC, Hein I, Taylor RM, Zhendong T, Engelhardt S, Vetukuri RR, Harrower B, Dixelius C, Bryan G, Sadanandom A, Whisson SC, Kamoun S, Birch P (2010) Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc National Acad Sci USA 107:9909–9914

    CAS  Google Scholar 

  • Botella MA, Parker JE, Frost LN, Bittner-Eddy PD, Beynon JL, Daniels MJ, Holub EB, Jones JD (1998) Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 10:1847–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw JE, Ramsay G (2005) Utilisation of the commonwealth potato collection in potato breeding. Euphytica 146:9–19

    Google Scholar 

  • Bradshaw JE, Bryan GJ, Lees AK, McLean K, Solo-mon-Blackburn RM (2006) Mapping the R10 and R11 genes for resistance to late blight (Phytophthora infestans) present in the potato (Solanum tuberosum) R-gene differentials of Black. Theor Appl Genet 112:744–751

    CAS  PubMed  Google Scholar 

  • Brown JS, Phillips‐Mora W, Power EJ, Krol C, Cervantes‐Martinez C, Motamayor JC, Schnell RJ (2007) Mapping QTLs for resistance to frosty pod and black pod diseases and horticultural traits in theobroma cacao L. Crop Sci 47(5):1851–1858

    Google Scholar 

  • Bu GZ, Gong ML, Ding CM, Yao SM, Zhang LL (1993) A new breeding line of tobacco selected by somatic hybridization between N. tabacum and N. rustica. Proc First Asia Pacific Conf Agricul Biotech, Beijing, China, pp 273–278

  • Burnham KD, Dorrance AE, VanToai TT, St Martin SK (2003) Quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Crop Sci 43(5):1610–1671

    CAS  Google Scholar 

  • Carputo D, Frusciante L (2011) Classical genetics and traditional breeding. In: Bradeen JM, Kole C (eds) Genetics, Genomics and Breeding of Potato, 20—40. CRC Press, New York

  • Casagrande K, Falginella L, Castellarin SD, Testolin R, Di Gaspero G (2011) Defence responses in Rpv3-dependent resistance to grapevine downy mildew. Planta 234:1097–1109

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Chao E (2006) Phylogeny and megasystematics of phagtrophic heterokonts (Kingdom Chromista). J Mol Evol 62:388–420

    CAS  PubMed  Google Scholar 

  • Chakrabarti SK, Singh BP, Thakur G, Tiwari JK, Kaushik SK, Sharma S, Bhardwaj V (2014) QTL analysis of late blight resistance in a diploid potato family of Solanum spegazzinii × S. chacoense. Potato Res 57:1–11

    Google Scholar 

  • Chen Q, Li HY, Shi YZ, Beasley D, Bizimungu B, Goettel MS (2008) Development of an effective protoplast fusion system for production of new potatoes with disease and insect resistance using Mexican wild potato species as gene pools. Can J Plant Sci 88(4):611–619

    CAS  Google Scholar 

  • Chowdhury AK, Srinives P, Saksoong P, Tongpamnak P (2002) RAPD markers linked to resistance to downy mildew disease in soybean. Euphytica 128(1):55–60

    CAS  Google Scholar 

  • Cogoni C, Macino G (2000) Gene silencing across kingdoms. Curr Opin Genet Dev 10:638–643

    CAS  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans Royal Soc B Biol Sci 363:557–572

    CAS  Google Scholar 

  • Collins A, Milbourne D, Ramsay L, Meyer R, Chatot-Balandras C, Oberhagemann P, De Jong W, Gebhardt C, Bonnel E, Waugh R (1999) QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour. Mol Breed 5:387–398

    CAS  Google Scholar 

  • Colton LM, Groza HI, Wielgus SM, Jiang J (2006) Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop Sci 46:589–594

    CAS  Google Scholar 

  • Crouzillat D, Phillips W, Fritz PJ, Petiard V (2000) Quantitative trait loci analysis in Theobroma cacao using molecular markers. Inheritance of polygenic resistance to Phytophthora palmivora in two related cacao populations. Polygenic resistance to Phytophthora palmivora in cacao. Euphytica 14(1):25–36

    Google Scholar 

  • De Jong W, Forsyth A, Leister D, Gebhardt C, Baulcombe DC (1997) A potato hypersensitive resistance gene against potato virus X maps to a resistance gene cluster on chromosome 5. Theor Appl Genet 95:246–252

    Google Scholar 

  • De Toledo Thomazella DP, Brail Q, Dahlbeck D, Staskawicz BJ (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad spectrum disease resistance. BioRxiv. https://doi.org/10.1101/064824

    Article  Google Scholar 

  • Demirbas A, Rector BG, Lohnes DG, Fioritto RJ, Graef GL, Cregan PB, Shoemaker RC, Specht JE (2001) Simple sequence repeat markers linked to the soybean Rps genes for Phytophthora resistance. Crop Sci 41(4):1220–1227

    CAS  Google Scholar 

  • Dong S, Yu D, Cui L, Qutob D, Tedman-Jones J, Kale SD, Tyler BM, Wang Y, Gijzen M (2011) Sequence variants of the Phytophthora sojae RXLR effector Avr3al5 are differentially recognized by Rps3a and Rps5 in soybean. PLoS ONE 6:e20172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunker F, Trutzenberg A, Rothenpieler JS, Kuhn S, Prols R, Schreiber T, Tissier A, Kemen A, Kemen E, Huckelhoven R, Weiberg A (2020) Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. Life 9:e56096. https://doi.org/10.7554/eLife-56096

    Article  Google Scholar 

  • El Kharbotly A, Palomino Sanchez C, Salamini F, Jacobsen E, Gebhardt C (1996) R6 and R7 alleles of potato conferring race-specific resistance to Phytophthora infestans (Mont.) de Bary identified genetic loci clustering with the R3 locus on chromosome XI. Theor Appl Genet 92:880–884

    PubMed  Google Scholar 

  • Essmann J, Schmitz-Thom I, Schon H, Sonnewald S, Weis E, Scharte J (2008) RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant Physiol 147(3):1288–1299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Tyler BM (2016) Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol Pl Pathol 17(1):127–139

    CAS  Google Scholar 

  • Farinho M, Coelho P, Carlier J et al (2004) Mapping of a locus for adult plant resistance to downy mildew in broccoli (Brassica oleracea convar. italica). Theor Appl Genet 109:1392–1398

    CAS  PubMed  Google Scholar 

  • Fawke S, Doumane M, Schornack S (2015) Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 79:263–280

    PubMed  PubMed Central  Google Scholar 

  • Fister AS, Landherr L, Maximova SN, Guiltinan MJ (2018) Transient-expression of CRISPR/Cas 9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00268

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster SJ, Park TH, Pel M, Brigneti G, Sliwka J, Jagger L, van der Vossen E, Jones JDG (2009) Rpi-vnt1.1, a Tm-22 homo-log from Solanum venturii, confers resistance to potato late blight. Mol Plant-Microbe Intert 22:589–600

    CAS  Google Scholar 

  • Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9:385–402

    PubMed  PubMed Central  Google Scholar 

  • Gan L, Sun Zhong H, Deng Xiu X, Zhang WC (1995) Studies on the resistance of citrus somatic hybrids. Acta Hortic Sin 22(3):209–214

    Google Scholar 

  • Gaulin E, Jauneau A, Villalba F, Rickauer M, Esquerre-Tugaye MT, Bottin A (2002) The CBEL glycoprotein of Phytophthora parasitica var nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J Cell Sci 115:4565–4575

    CAS  PubMed  Google Scholar 

  • Gebhardt C, Valkonen JPT (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39:79–102

    CAS  PubMed  Google Scholar 

  • Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Scluler K (2004) Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed 13:93–102

    CAS  Google Scholar 

  • Gilroy EM, Breen S, Whisson SC, Squires J, Hein I, Kaczmarek M, Turnbull D, Boevink PC, Lokossou A, Cano LM, Morales J (2011) Presence/absence, differential expression and sequence polymorphisms between PiAVR2 and PiAVR2-like in Phytophthora infestans determine virulence on R2 plants. New PhIytol 191(3):763–776

    CAS  Google Scholar 

  • Golas TMA, Sikkema A, Gros J, Feron RMC, van der Berg RG, van der Weerden GM, Mariani C, Allefs JJHM (2010) Identification of a resistance gene Rpi-dlc1 to Phytophthora infestans in European accessions of Solanum dulcamara. Theor Appl Genet 120:797–808

    PubMed  Google Scholar 

  • Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonois suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol 144(2):728–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grenville-Briggs LJ, Anderson VL, Fugelstad J, Avrova AO, Bouzenzana J, Williams A, Wawra S, Whisson SC, Birch PRJ, Bulone V, van West P (2008) Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. Plant Cell 20(3):720–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grosser JW, Gmitter FG Jr, Castle WS, Chandler JL (1998) Somatic hybridization: a new approach to citrus rootstock improvement. Fruits 53(5):331–334

    CAS  Google Scholar 

  • Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AM, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bo JI, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N et al (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    CAS  PubMed  Google Scholar 

  • Hai THT, Kim JH, Cho MC, Chae SY, Lee HE (2013) Identification and development of molecular markers linked to Phytophthora root rot resistance in pepper (Capsicum annuum L.). Eur J Plant Pathol 135(2):289–297

    Google Scholar 

  • Hamon C, Baranger A, Coyne CJ, McGee RJ, Goff I, le, L’Anthoene V, Esnault R, Riviere JP, Klein A, Mangin P, PcPhee KE, Roux-Duparque M, Porter L, Miteul H, Lesne A, Morin G, Onfroy C, Moussart, A, Tivoli B, Delmourme R, Plet-Nayel M L (2011) New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments. Theor Appl Genet 123(2): 261-–281

  • Hein I, Birch PRJ, Danan S, Lefebvre V, Odeny DA, Geb-hardt C, Trognit F, Bryan GL (2009) Progress in mapping and cloning qualitative and quantitative resistance against Phytophthora infestans in potato and its wild relatives. Potato Res 52:215–227

    Google Scholar 

  • Helgeson JP, Hunt GJ, Haberlach GT, Austin S (1986) Somatic hybrids between Solanum brevidens and Solanum tuberosum: expression of a late blight resistance gene and potato leaf roll resistance. Plant Cell Rep 5(3):212–214

    CAS  PubMed  Google Scholar 

  • Hermanova V, Barta J, Curn V (2007) Wild potato species: characterization and biological potential for potato breeding. Czech J Genet Plant Breed 43:73–81

    Google Scholar 

  • Horejsi T, Staub JE, Thomas C (2000) Linkage of random amplified polymorphic DNA markers to downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 115:105–113

    CAS  Google Scholar 

  • Hua C, Wang Y, Zheng X, Dou D, Zhang Z, Govers F (2008) A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. Eukaryot Cell 7:2133–2140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Vivianne GAA, Vleeshouwers J, Werij S, Ronald C, Hutten B, Van Herman E, Richard GFV, Jacobsen E (2004) The R3 resistance to Phytophthora infestans in potato is conferred by two closely linked R genes with distinct specificities. Mol Plant-Microb Inter 17:428–435

    CAS  Google Scholar 

  • Huang S, van der Vossen EAG, Kuang H, Vleeshouwers VGAA, Zhang N, Borm TJA, van Eck HJ, Baker B, Jacobsen E, Visser RGF (2005) Comparative genomics enabled the cloning of the R3a late blight resistance gene in potato. Plant J 42:251–261

    CAS  PubMed  Google Scholar 

  • Jacobs MMJ, Vosman JB, Vleeshouwers VGAA, Viser RGF, Henken B, van der Berg RG (2010) A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map. Theor Appl Genet 120:785–796

    CAS  PubMed  Google Scholar 

  • Jahan SN, Åsman AK, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C (2015) Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J Exp Bot 66:2785–2794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia ZQ, Cui YH, Li Y, Yang YH, Huang SW, Du YC (2009) Expression the potato late blight resistant gene R3a, R1 and RB in tomato. Acta Hortic Sin 36:1153–1160

    CAS  Google Scholar 

  • Jo KR, Arens M, Kim TY, Jongsma MA, Visser RGF, Jacobsen E, Vossen JH (2011) Mapping of the S. demissum late blight resistance gene R8 to a new locus on chromosome IX. Theor Appl Genet 123:1331–1340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jo KR, Visser RGF, Jacobsen E, Vossen JH (2015) Characterisation of the late blight resistance in potato differential MaR9 reveals a qualitative resistance gene, R9a, residing in a cluster of Tm-2 2 homologs on chromosome IX. Theor Appl Genet 128:931–941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ES, Wolff MF, Wernsman EA, Rufty RC (2002) Marker-assisted selection for resistance to black shank disease in tobacco. Plant Dis 86(12):1303–1309

    CAS  PubMed  Google Scholar 

  • Judelson HS, Blanco FA (2005) The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol 3:47–58

    CAS  PubMed  Google Scholar 

  • Judelson HS, Tani S (2007) Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6:1200–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamoun S, Furzer O, Jonathan DGJ, Judelson HS, Gul SA, Ronaldo JDD, Roy SG, Schena L, Antonios Z, Franck P (2015) The top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434

    PubMed  Google Scholar 

  • Kemen E, Jones JD (2012) Obligate biotroph parasitism: can we link genomes to life styles? Trends Plant Sci 17:448–457

    CAS  PubMed  Google Scholar 

  • Kim HJ, Lee HR, Jo KR, Mortazavian SMM, Huigen DJ, Evenhuis B, Kessel G, Visser RGF, Jacobsen E, Vossen JH (2012) Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theor Appl Genet 124:923–935

    CAS  PubMed  Google Scholar 

  • Krasileva KV, Dahlbeck D, Staskawicz BJ (2010) Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22:2444–2458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latijnhouwers M, Govers F (2003) A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2(5):971–977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latijnhouwers M, Ligterink W, Vleeshouwers VG, van West P, Grovers F (2004) A alpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51:925–936

    CAS  PubMed  Google Scholar 

  • Leonards-Schippers C, Gieffers W, Salamini F, Gebhardt C (1992) The R1 gene conferring race specific resistance to Phytophthora infestans in potato is located on potato chromosome V. Mol Gen Genet 233:278–283

    CAS  PubMed  Google Scholar 

  • Lerceteau-Kohler E, Moing A, Guerin G, Maucourt M, Renaud C, Rolin D, Roudeillac P, Denoyes-Rothan B (2004) QTL analysis for fruit quality traits and resistance to Colletotrichum acutatum and Phytophthora cactorum in octoploid strawberry (Fragaria × ananassa). Acta Hortic 649:93–97

    Google Scholar 

  • Li X, van Eck HJ, Rouppe van der Voort JNAM, Huigen DJ, Stam P, Jacobsen E (1998) Autotetraploids and genetic mapping using common AFLP markers: the R2 allele conferring resistance to Phytophthora infestans mapped on potato chromosome 4. Theor Appl Genet 96:1121–1128

    CAS  Google Scholar 

  • Li XP, Han YP, Teng W, Zhang SZ, Yu KF, Poysa V, Anderson T, Ding JJ, Li WB (2010) Pyramided QTL underlying tolerance to Phytophthora root rot in mega environments from soybean cultivars ‘Conrad’ and ‘Hefeng 25.’ Theor Appl Genet 121(4):651–658

    PubMed  Google Scholar 

  • Li G, Huang S, Guo X, Li Y, Yang Y, Guo Z, Kuang H, Rietman H, Bergervoet M, Vleeshouwers VGAA, van der Vossen E, Qu D, Visser RGF, Jacobsen E, Vossen JH (2011) Cloning and characterization of R3b; members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Mol Plant Microbe Inter 24:1132–1142

    CAS  Google Scholar 

  • Li L, Tacke E, Lu J, Walkemeier B, Gebhardt C (2013) Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theor Appl Genet 126:1039–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun S, Zhong C, Wang X, Wu X, Zhu Z (2017) Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean. Theor Appl Genet 130(6):1223–1233

    CAS  PubMed  Google Scholar 

  • Lim S, Bernard R, Nickell C, Grey L (1984) New physiological race of Peronospora manschurica virulent to the gene Rpm in soybeans. Plant Dis 68:71–72

    Google Scholar 

  • Liu Z, Halterman D (2006) Identification and characterization of RB-orthologous genes from the late blight resistant wild potato species Solanum verrucosum. Physiol Mol Plant Pathol 69:230–239

    CAS  Google Scholar 

  • Liu JH, Xu XY, Deng XX (2005) Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tiss Org 82:19–44

    CAS  Google Scholar 

  • Liu T, Ye W, Ru Y, Yang X, Gu B, Tao K, Lu S, Dong S, Zheng X, Shan W, Wang Y, Dou D (2011) Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses. Plant Physiol 155:490–501

    CAS  PubMed  Google Scholar 

  • Liu WY, Kang JH, Jeong HS, Choi HJ, Yang HB, Kim KT, Choi D, Choi GJ, Jahn M, Kang BC (2014) Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper. Theor Appl Genet 127(11):2503–2513

    CAS  PubMed  Google Scholar 

  • Lokossou A, Park TH, Van Arkel G, Arens M, Ruyter-Spira C, Morales J, Steve C, Whisson SC, Birch PRJ, Visser RGF, Jacobsen E, VanderVossen EAG (2009) Exploiting knowledge of R/Avr genes to rapidly Clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Mol Plant-Microbe Inter 22:630–641

    CAS  Google Scholar 

  • Louwes KM, Hoekstra R, Mattheij WM (1992) Interspecific hybridization between the cultivated potato Solanum tuberosum subspecies tuberosum L. and the wild species S. circaeifolium subsp. circaeifolium Bitter exhibiting resistance to Phytophthora infestans (Mont.) de Bary and Globodera pallida (Stone) Berhrens. 2. Sexual Hybrids Theor Appl Genet 84:362–370

    CAS  PubMed  Google Scholar 

  • Mattheji WM, Louwes KM, Eijlander RE, de Koning JRA, Puite KJ (1991) Transfer of resistance to Phytophthora infestans and Globodera pallida to the potato gene pool by interspecific somatic hybridization. Physiol Plant 82(1):A23

    Google Scholar 

  • Matzke MA, Mette MF, Matzke AJ (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 43:401–415

    CAS  PubMed  Google Scholar 

  • McDowell JM, Dhandaydham M, Long TA, Aarts MG, Goff S, Holub EB, Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meksem K, Leister D, Peleman J, Zabeau M, Salamini F, Gebhardt C (1995) A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Mol Gen Genet 249:74–81

    CAS  PubMed  Google Scholar 

  • Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. pp 451–456. In: Proceedings of the 8th International Conference on Grape Genetics and Breeding, Kecskemet, Hungary, 26 August 2002 to 31 August 2002.

  • Miao JQ, Cai M, Dong X, Liu L, Lin D, Zhang C, Pang ZL, Liu XL (2016) Resistance assessment for oxathiapiprolin in Phytophthora capsici and the deletion of a point mutation (G769W) in PcORP1 and confers resistance. Front Microbiol 7:615

    PubMed  PubMed Central  Google Scholar 

  • Miao J, Chi Y, Lin D, Tyler BM, Liu X (2018) Mutations in ORP1 conferring oxathiapiprolin resistance confirmed by genome editing using CRISPR/Cas 9 in P. capsici and P. sojae. Phytopathology 108:1412–1419

    CAS  PubMed  Google Scholar 

  • Minamiyama Y, Tsuro M, Kubo T, Hirai M (2007) QTL analysis for resistance to Phytophthora capsici in pepper using a high density SSR-based map. Breed Sci 57(2):129–134

    CAS  Google Scholar 

  • Mori K, Sakamoto Y, Mukojima N, Tamiya S, Nakao T, Ishii T, Hosaka K (2011) Development of a multiplex PCR method for simultaneous detection of diagnostic DNA markers of five diseases and pests resistance genes in potato. Euphytica 180:347–355

    Google Scholar 

  • Mourao-Filho F, de AA, Pio R, Mendes BMJ, Azevedo FAde, Schinor EH, Entelmann FA, Alves ASR, Cantuarias TE (2008) Evaluation of citrus somatic hybrids for tolerance to Phytophthora nicotianae and citrus tristeza virus. Sci Hortic 115(3): 301-308

  • Na R, Yu D, Qutob D, Zhao J, Gijzen M (2013) Deletion of the Phytophthora sojae avirulence gene Avr1d causes gain of virulence on Rps1d. Mol Plant Microbe Interact 26:969–976

    CAS  PubMed  Google Scholar 

  • Naess SK, Bradeen JM, Wielgus SM, Haberlach GT, McGrath JM, Helgeson JP (2001) Analysis of the introgression of Solanum bulbocastanum DNA into potato breeding lines. Mol Genet Genom 265:694–704

    CAS  Google Scholar 

  • Niblett CL, Bailey AM (2012) Potential applications of gene silencing or RNA interference (RNAi) to control disease and insect pests of date palm. Emir J Food Agr 24:462–469

    Google Scholar 

  • Nouri-Ellouz O, Gargouri-Bouzid R, Sihachakr D, Triki MA, Ducreux G, Drira N, Lakhoua L (2006) Production of potato intraspecific somatic hybrids with improved tolerance to PVY and Pythium aphanidermatum. J Plant Physiol 163(12):1321–1332

    CAS  PubMed  Google Scholar 

  • Nowara D, Gay A, Laccome C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oberhagemann P, Chatot-Balandras C, Schafer-Pregl R, Wegener D, Palomino C, Salamini F, Bonnel E, Gebhardt C (1999) A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection. Mol Breed 5: 399-415

  • Oosumi T, Rockhold DR, Maccree MM, Deahl KL, McCue KF, Belknap WR (2009) Gene Rpi-bt1 from Solanum bulbocastanum confers resistance to late blight in transgenic potatoes. Am J Potato Res 86:456–465

    CAS  Google Scholar 

  • Pandeya RS, Douglas GC, Keller WA, Setterfield G, Patrick ZA (1986) Somatic hybridization between Nicotiana rustica and N. tabacum: development of tobacco breeding strains with disease resistance and elevated nicotine content. Zeit Pflanzen 96(4):346–352

    Google Scholar 

  • Pang X, Zhou XH, Wan HJ, Chen JF (2013) QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucums hystrix. J Phytopathol 161(7/8):536–543

    Google Scholar 

  • Park TH, Vleeshouwers GAA, Hutten RCB, van Eck HJ, van der Vossen E, Jacobsen E, Visser RGF (2005) High-resolution mapping and analysis of the resistance locus Rpi-abpt against Phytophthora infestans in potato. Mol Breed 16:33–43

    CAS  Google Scholar 

  • Parker JE, Coleman MJ, Szabò V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JD (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the Toll and interleukin-1 receptors with N and L6. Plant Cell 9:879–894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel D, Power JB, Anthony P, Badakshi F, Heslop-Harrison JS, Davey MR (2011) Somatic hybrid plants of Nicotiana × sanderae (+) N. debneyi with fungal resistance to Peronospora tabacina. Ann Bot 108(5):809–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pel MA, Foster SJ, Park TH, Rietman H, van Arkel G, Jones JDG, Eck HJV, Jacobsen E, Visser RGF, van der Vossen EAG (2009) Mapping and cloning of late blight resistance genes from Solanum venturii using an interspecific candidate gene approach. Mol Plant-Microbe Inter 22:601–615

    CAS  Google Scholar 

  • Pettongkhao S, Navet N, Schornack S, Tian M, Churngchow N (2020) A secreted protein of 15kDa plays an important role in Phytophthora palmivora development and pathogenicity. Sci Rep 10:2319. https://doi.org/10.1038/s41598-020-59007-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2003) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106(1):28–39

    Google Scholar 

  • Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2005) Consistent quantitative trait loci in pea for partial resistance to Aphanomyces euteiches isolates from the United States and France. Phytopathology 95(11):1287–1293

    CAS  PubMed  Google Scholar 

  • Polzerova H, Patzak J, Greplova M (2011) Early characterization of somatic hybrids from symmetric protoplast electrofusion of Solanum pinnatisectum Dun. and Solanum tuberosum L. Plant Cell Tissu Org 104(2):163–170

    Google Scholar 

  • Prins M, de Haan P, Luyten R, van Veller M, van Grinsven MQ, Goldbach R (1995) Broad resistance to tospoviruses in transgenic tobacco plants expressing three tospoviral nucleoprotein gene sequences. Mol Plant-Microbe Inter 8:85–91

    CAS  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    CAS  PubMed  Google Scholar 

  • Quirin EA, Ogundiwin EA, Prince JP, Mazourek M, Briggs MO, Chlanda TS, Kim KT, Falise M, Kang BC, Jahn MM (2005) Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto 5.2, a major QTL for resistance to Phytophthora capsici Leon. in pepper. Theor Appl Genet 110(4): 605–612.

  • Qutob D, Tedman-Jones J, Dong S, Kuflu K, Pham H, Wang Y, Dou D, Kale SD, Arredondo FD, Tyler BM, Gijzen M (2009) Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a. PLoS ONE 4:e5066

    PubMed  PubMed Central  Google Scholar 

  • Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, Jiang RH, Zody MC, Kunjeti SG, Donofrio NM, Meyers BC (2010) Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330:1540–1543

    CAS  PubMed  Google Scholar 

  • Rietman H (2011) Putting the Phytophthora infestans genome sequence at work: identification of many new R and Avr genes in Solanum. Ph.D. theiss. Wageningen University, Wageningen, the Netherlands

  • Rokka VM, Xu YS, Kankila J, Kuusela A, Pulli S, Pehu E (1994) Identification of somatic hybrids of dihaploid Solanum tuberosum lines and S. brevidens by species specific RAPD patterns and assessment of disease resistance of the hybrids. Euphytica 80(3):207–217

    CAS  Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev 12:198–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu D, Schallock KG, Rivera-Velez N, Lundeen P, Cianzio S, Bhattacharyya MK (2005) Soybean Phytophthora resistance gene Rps8 maps closely to the Rps3 region. J Hered 96(5):536–541

    CAS  PubMed  Google Scholar 

  • Sanju S, Siddappa S, Thakur A, Shukla PK, Srivastava N, Pattanayak D, Sharma S, Singh BP (2015) Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts potential resistance to late blight disease. Funct Integr Genom 15(6):697–706

    CAS  Google Scholar 

  • Sanju S, Thakur A, Siddappa S, Sharma S, Shukla PK, Srivastava N, Pattanayak D, Singh BP (2016) In-vitro detached leaf assay of host-mediated RNAi lines carrying Phytophthora infestans Avr3a effector gene for late blight resistance. Potato J 43(1):30–37

    Google Scholar 

  • Sarkar D, Tiwari JK., Sharma S, Poonam, Sharma S, Gopal J, Singh BP, Luthra SK, Pandey SK, Pattanayak D (2011) Production and characterization of somatic hybrids between Solanum tuberosum L. and S. pinnatisectum Dun. Plant Cell Tiss Org 107(3): 427–440.

  • Sarkar D, Tiwari JK, Sharma S, Poonam, Sharma S, Gopal J, Singh BP, Luthra SK, Pandey SK, Pattanayak D (2013) P-7 (IC0590090; INGR11051), a potato (Solanum tuberosum (+) S. pinnatisectum tetraploid, somatic male fertile hybrid conferring resistance to potato late blight introgressed from S. pinnatisectum. Indian J Plant Genetic Resour 26(1): 93–94.

  • Scharte J, Schon H, Tjaden Z, Weis E, Schaewen A (2009) Isoenzyme replacement of glucose-6-phosphate dehydrogenase in the cytosol improves stress tolerance in plants. Proc Natl Acad Sci, USA 106(19):8061–8066

    CAS  PubMed  Google Scholar 

  • Scholten OE, Heusden AW, Khrustaleva LI, Burger-Meijer K, Mank RA, Antonise RGC, Harrewijn JL, Haecke W, Oost EH, Peters RJ, Kik C (2007) The long and winding road leading to the successful introgression of downy mildew resistance into onion. Euphytica 156(3):345–353

    Google Scholar 

  • Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Töpfer R (2012) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176

    CAS  PubMed  Google Scholar 

  • Shan W, Cao M, Leung D, Tyler BM (2004) The Avr1b locus of Phutophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Mol Plant-Microbe Inter 17:394–403

    CAS  Google Scholar 

  • Shandil RK, Chakrabarti SK, Singh BP, Sharma S, Sundaresha S, Kaushik SK, Bhatt AK, Sharma NN (2017) Genotypic background of the recipient plant is crucial for conferring RB gene mediated late blight resistance in potato. BMC Genet 18:1–8

    Google Scholar 

  • Sharma R, Bhardwaj V, Dalamu D, Kaushik SK, Singh BP, Sharma S, Umamaheshwari R, Baswaraj R, Kumar V, Gebhardt C (2014) Identification of elite potato genotypes possessing multiple disease resistance genes through molecular approaches. Sci Hortic 179:204–211

    CAS  Google Scholar 

  • Sliwka J, Jaknczum H, Lebecka R, Marczewski W, Gebrhardt C, Zimnoch-Guzowska E (2006) The novel, major locus Rpi-phu 1 for late blight resistance maps to potato chromosome IX and is not correlated with long vegetation period. Theor Appl Genet 113:685–695

    CAS  PubMed  Google Scholar 

  • Smilde WD, Brigneti G, Jagger L, Perkins S, Jones JD (2005) S. mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theor Appl Genet 110:252–258

    CAS  PubMed  Google Scholar 

  • Smyda P, Jakuczun H, Debski K, Sliwka J, Thieme R, Nachtigall M, Wasilewicz-Flis I, Zimnoch-Guzowska E (2013) Development of somatic hybrids Solanum x michoacanum Bitter. (Rydb.) (+) S. tuberosum L. and autofused 4x S. michoacanum plants as potential sources of late blight resistance for potato breeding. Plant Cell Rep 32(8): 1231–1241.

  • Sohn KH, Lei R, Nemri A, Jones JD (2007) The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Plant Cell 19:4077–4090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolova E, Pankin A, Beketova M, Kuznetsova M, Spiglazova S, Rogozina E, Yashina I, Khavkin E (2011) SCAR markers of the R-genes and germplasm of wild Solanum species for breeding late blight-resistant potato cultivars. Plant Genet Resour 9:309–312

    CAS  Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buel CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci, USA 100:9128–9133

    CAS  PubMed  Google Scholar 

  • Srivastava AK, Singh BP, Kaushik SK, Bhardwaj V, Tiwari JK, Sharma S (2016) Identification of late blight resistance gene homologous in wild Solanum species. Proc Natl Acad Sci India Sect B Biol Sci 88(2):789–796

    Google Scholar 

  • Subramaniam S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137(4):1345–1353

    Google Scholar 

  • Sugita T, Yamaguchi K, Kinoshita T, Yuji K, Sugimura Y, Nagata R, Kawasaki S, Todoroki A (2006) QTL analysis for resistance to Phytophthora blight (Phytophthora capsici Leon.) using an intraspecific double haploid population of Capsicum annuum. Breed Sci 56(2):137–145

    CAS  Google Scholar 

  • Sundaresha S, Sharma S, Shandil RK, Sharma S, Thakur V, Bhardwaj V, Kaushik SK, Singh BP, Chakrabarti SK (2018) An insight into downstream analysis of RB gene in F1 RB potato lines imparting field resistance to late blight. Funct Plant Biol 45(10):1026–1037

    CAS  PubMed  Google Scholar 

  • Szczerbakova A, Tarwacka J, Oskiera M, Jakuczun H, Wielgat B (2010) Somatic hybridization between the diploids of S. × michoacanum and S. tuberosum. Acta Physiol Plant 32(5):867–873

    Google Scholar 

  • Tan MYA, Hutten RCB, Visser RGF, van Eck HJ (2010) The effect of pyramiding Phytophthora infestans resistance genes Rpi-mcd1 and Rpi-ber in potato. Theor Appl Genet 121:117–125

    PubMed  PubMed Central  Google Scholar 

  • Thakur A, Sanju S, Sundaresha S, Srivastava N, Shukla PK, Pattanayak D, Sharma S, Singh BP (2015) Artificial microRNA mediated gene silencing of Phytophthora infestans single effector Avr3a gene imparts moderate type of late blight resistance in potato. Plant Pathol J 14(1):1–12

    CAS  Google Scholar 

  • Thieme R, Darsow U, Rakosy TL, Kang-Zhen S, Gavrilenko T, Antonova O, Heimbach U, Thieme T (2004) Use of somatic hybridization to transfer resistance to late blight and potato virus Y (PVY) into cultivated potato. Plant Breed Seed Sci 50:113–118

    Google Scholar 

  • Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T (2008) Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theor Appl Genet 116(5):691–700

    CAS  PubMed  Google Scholar 

  • Tiwari JK, Poonam KV, Singh BP, Sharma S, Luthra SK, Bhardwaj V (2013) Evaluation of potato somatic hybrid of dihaploid Solanum tuberosum (+) S. pinnatisectum for late blight resistance. Potato J 40(2):176–179

    Google Scholar 

  • Tiwari JK, Devi S, Sharma S, Chandel P, Rawat S, Singh BP (2015) Allele mining in Solanum germplasm: cloning and characterization of RB-homologous gene fragments from late blight resistant wild potato species. Plant Mol Biol Rep 33(5):1584–1598

    CAS  Google Scholar 

  • Tör M, Holub E, Brose E, Musker R, Gunn N, Can C, Crute I, Beynon J (1994) Map positions of three loci in Arabidopsis thaliana associated with isolate-specific recognition of Peronospora parasitica (downy mildew). Mol Plant Microbe Interact 7:214–222

    Google Scholar 

  • Toxopeus HJ (1956) Reflections on the origin of new physiologic races in Phytophthora infestans and the breeding for resistance in potatoes. Euphytica 5:221–237

    Google Scholar 

  • Tyler BM (2002) Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu Rev Phytopathol 40:137–167

    CAS  PubMed  Google Scholar 

  • van der Vossen EAG, Sikkema ABL, Hekkert J, Gros P, Stevens M, Muskens D, Wouters A, Pereira W, Stiekema AS (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882

    PubMed  Google Scholar 

  • van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog confer-ring broad spectrum late blight resistance in potato. Plant J 44:208–222

    PubMed  Google Scholar 

  • van West P, Kamoun S, van’t Klooster JW, Govers F (1999) Internuclear gene silencing in Phytophthora infestans. Mol Cell 3: 339–348

  • Venuti S, Copetti D, Foria S, Falginella L, Hoffmann S, Bellin D, Cindric P, Kozma P, Scalabrin S, Morgante M, Testolin R, Gaspero GD (2013) Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS ONE 8(4):e61228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verzaux E (2010) Resistance and susceptibility to late blight in Solanum: gene mapping cloning and stacking. Ph.D Thesis, Wageningen University, The Netherlands

  • Vetukuri RR, Avrova AO, Grenville-Briggs LJ, van West P, Soderbom F, Savenkov EI, Whisson SC, Dixelius C (2011a) Evidence for involvement of dicer-like, argonaute and histone deacetylase proteins in gene silencing in Phytophthora infestans. Mol Plant Pathol 12:772–785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vetukuri RR, Tian Z, Avrova AO, Savenkov EI, Dixelius C, Whisson SC (2011b) Silencing of the PiAvr3a effector encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element. Fungal Biol 115:1225–1233

    CAS  PubMed  Google Scholar 

  • Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C, Oh SK, Wang M, Bouwmeester K, Vosman B, Visser RGF, Jacobsen E, Govers F, Kamoun S, van der Vossen EAG (2008) Effector genomics accelerates discovery and functional pro-filing of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE 3:e2875

    PubMed  PubMed Central  Google Scholar 

  • Vossen JH, van Arkel G, Bergervoet M, Jo KR, Jacobsen E, Visser RG (2016) The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. Theor Appl Genet 129:1785–1796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:e1001877. https://doi.org/10.1371/journal.pbio.1001877

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker CA, Koppe M, Grenville-Briggs LJ, Avrova AO, Horner NR, McKinnon AD, Whisson SC, Birch PRJ, van West P (2008) A putative DEAD-box RNA-helicase is required for normal zoospore development in the late blight pathogen Phytophthora infestans. Fungal Genet Biol 45(6):954–962

    CAS  PubMed  Google Scholar 

  • Wang Y, Dou D, Wang X, Li A, Sheng A, Hua C, Cheng B, Chen X, Zheng X, Wang Y (2009) The PsCZF1 gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae. Microbiol Pathogen 47:78–86

    Google Scholar 

  • Wang Y, Li A, Wang X, Zhang X, Zhao W, Dou D, Zheng Y, Wang Y (2010) GPR11, a putative seven-transmembrane G protein-coupled receptor, controls zoospore development and virulence of Phytophthora sojae. Eukaryot Cell 9(2):242–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Wang L, Guo J, Yang W, Shen H (2016) Molecular mapping of a gene conferring resistance to Phytophthora capsici Leonian race 2 in pepper line PI201234 (Capsicum annuum L.). Mol Breed 36(6):66

    Google Scholar 

  • Weber CA, Pattison J, Samuelian S (2008) Marker assisted selection for resistance to root rot in red raspberry caused by Phytophthora fragariae var. rubi. Acta Hortic 777:311–316

    Google Scholar 

  • Whisson SC, Avrova AO, Lavrova O, Pritchard L (2005) Families of short interspersed elements in the genome of the oomycete plant pathogen, Phytophthora infestans. Fungal Genet Biol 42:351–365

    CAS  PubMed  Google Scholar 

  • Whisson SC, Vetukuri RR, Avrova AO, Dixelius C (2012) Can silencing of transposons contribute to variation in effector gene expression in Phytophthora infestans? Mob Genet Elements 2:110–114

    PubMed  PubMed Central  Google Scholar 

  • White S, Shaw D (2010) Breeding for host resistance: the key to sustainable potato production. PPO-Special Rep 14:125–130

    Google Scholar 

  • Wickramasinghe WMDK, Qu XS, Costanzo S, Haynes KG, Christ BJ (2009) Development of PCR-based markers linked to quantitative resistance to late blight in a diploid hybrid potato population of S. phureja × S. stanotomum. Am J Potato Res 86:188–195

    CAS  Google Scholar 

  • Wu XL, Zhang BQ, Shi S, Zhao JM, Feng Y, Na G, Gai JY, Han X (2011) Identification, genetic analysis and mapping of resistance to Phytophthora sojae of Pm28 in soybean. Agric Sci China 10(10):1506–1511

    CAS  Google Scholar 

  • Xu X, Chao J, Cheng X, Wang R, Sun B, Wang H, Luo S, Xu X, Wu T, Li Y (2016) Mapping of a novel race specific resistance gene to phytophthora root rot of pepper (Capsicum annuum) using bulked segregant analysis combined with specific length amplified fragment sequencing strategy. PLoS ONE 11(3):e0151401

    PubMed  PubMed Central  Google Scholar 

  • Yang L, Wang D, Xu Y, Zhao H, Wang L, Cao X, Chen Y, Chen Q (2017) A new resistance gene against potato late blight originating from Solanum pinnatisectum located on potato chromosome 7. Front Plant Sci 8:1729. https://doi.org/10.3389/fpls.2017.01729

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin C, Jugenson J, Hulbert S (2010) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiforms f.sp. tritici. Mol Plant-Microbe Interact 24:554–561

    Google Scholar 

  • Zeilmaker T, Ludwig NR, Elberse J, Seidl MF, Berke L, Van Doorn A, Schuurink RC, Snel B, Van den Ackerveken G (2015) Downy mildew resistant 6 and DMR 6-Like oxygenase 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant J 81:210–222. https://doi.org/10.1111/tpj.12719

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Liu MM, Miao H, Zhang SQ, Yang Y, Xie B, Wehner T, Gu XF (2013) Chromosomal mapping and QTL analyses of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251

    CAS  PubMed  Google Scholar 

  • Zhao W, Dong S, Ye W, Hua C, Meijer HJG, Dou X, Govers F, Wang Y (2011) Genome‐wide identification of Phytophthora sojae SNARE genes and functional characterization of the conserved SNARE PsYKT6. Fungal Genet Biol 48:241–251

    CAS  PubMed  Google Scholar 

  • Zimnoch-Guzowska E, Lebecka R, Krysczuk A, Maciejewska U, Szczerbakowa A, Wielgat B (2003) Resistance to Phytophthora infestans in somatic hybrids of Solanum nigrum L. and diploid potato. Theor Appl Genet 107:l43–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Sundaresha, S. & Bhardwaj, V. Biotechnological approaches in management of oomycetes diseases. 3 Biotech 11, 274 (2021). https://doi.org/10.1007/s13205-021-02810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02810-y

Keywords

Navigation