Skip to main content

Advertisement

Log in

Isolation and characterization of cyclotides from the leaves of Viola odorata L. using peptidomic and bioinformatic approach

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Cyclotides are true gene products characterized by the presence of six conserved cysteine residues and knotted arrangement of three disulfide bonds. These macrocyclic peptides show exceptional resistance to thermal, chemical and enzymatic degradation which is defined due to their three-dimensional folding. The current study describes an efficient strategy involving reduction, enzymatic digestion and mass spectroscopy sequencing for the identification of the precursor sequences and the cyclotide domains present in the leaf tissue of Viola odorata. We observed 122 partial peptide sequences containing 31 cyclotide domains along with 19 unique sequences consisting of putative novel cyclotides and acyclotides. Four precursor sequences consisting of putative new and already reported domains were further characterized for cyclotide domains, their structure and subfamilies. The sequences revealed the presence of classic knotted cyclotide folds with similar six characteristic loops but different amino acid residues. Molecular modeling indicated that the secondary structures present in the cyclotides are mainly α-helix and random coils. Variation in the sequences and conservation in cysteine residues in the cyclotides was revealed by protein diversity wheel. The significant information observed in the current study expands our knowledge about the structure and type of cyclic peptides in V. odorata leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aslam L, Kaur R, Kapoor N, Mahajan R (2020) Phytochemical composition and antioxidant activities of leaf extracts of Viola odorata from Kishtwar, Jammu and Kashmir. J Herbs Spices Med Plants 26:77–88

    CAS  Google Scholar 

  • Broussalis AM, Goransson U, Coussio JD, Ferraro G, Martino V, Claeson P (2001) First cyclotide from Hybanthus (Violaceae). Phytochemistry 58:47–51

    CAS  PubMed  Google Scholar 

  • Burman R, Yeshak MY, Larsson S, Craik DJ, Rosengren KJ, Goransson U (2015) Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. Front Plant Sci 27:855

    Google Scholar 

  • Camarero JA, Campbell MJ (2019) The potential of the cyclotide scaffold for drug development. Biomedicines 7:31

    CAS  PubMed Central  Google Scholar 

  • Chiche L, Heitz A, Gelly JC, Gracy J, Chau PT, Ha PT, Hernandez JF, Le-Nguyen D (2004) Squash inhibitors: from structural motifs to macrocyclic knottins. Curr Protein Pept Sci 5:341–349

    CAS  PubMed  Google Scholar 

  • Colgrave ML, Kotze AC, Huang YH, O’Grady J, Simonsen SM, Craik DJ (2008a) Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep. Biochemistry 47:5581–5589

    CAS  PubMed  Google Scholar 

  • Colgrave ML, Kotze AC, Ireland DC, Wang CK, Craik DJ (2008b) The anthelmintic activity of the cyclotides: natural variants with enhanced activity. Chem Biochem 9:1939–1945

    CAS  Google Scholar 

  • Craik DJ, Conibear AC (2011) The chemistry of cyclotides. J Org Chem 76:4805–4817

    CAS  PubMed  Google Scholar 

  • Craik DJ, Du J (2017) Cyclotides as drug design scaffolds. Curr Opin Chem Biol 38:8–16

    CAS  PubMed  Google Scholar 

  • Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336

    CAS  PubMed  Google Scholar 

  • Craik DJ, Anderson MA, Barry DG, Clark RJ, Daly NL, Jennings CV, Mulvenna J (2001) Discovery and structures of the cyclotides: novel macrocyclic peptides from plants. Lett Pept Sci 8:119–128

    CAS  Google Scholar 

  • Craik DJ, Daly NL, Mulvenna J, Plan MR, Trabi M (2004) Discovery, structure and biological activities of the cyclotides. Curr Protein Pept Sci 5:297–315

    CAS  PubMed  Google Scholar 

  • Crisostomo BA, Atis AA, Mirano-Bascos DN, Hernandez CC (2019) Identification of cysteine knot peptides in four Philippine plant species using mass spectrometry and transcriptome analysis. Philipp Sci Lett 12:39–52

    Google Scholar 

  • Daly NL, Gunasekera S, Clark RJ, Lin F, Wade JD, Anderson MA, Craik DJ (2016) The N-terminal pro-domain of the kalata B1 cyclotide precursor is intrinsically unstructured. Peptide Sci 106:825–833

    CAS  Google Scholar 

  • Dutton JL, Renda RF, Waine C, Clark RJ, Daly NL, Jennings CV, Anderson MA, Craik DJ (2004) Conserved structural and sequence elements implicated in the processing of gene-encoded circular proteins. J Biol Chem 279:46858–46867

    CAS  PubMed  Google Scholar 

  • Fahradpour M, Keov P, Tognola C, Perez-Santamarina E, McCormick PJ, Ghassempour A, Gruber CW (2017) Cyclotides isolated from an ipecac root extract antagonize the corticotropin releasing factor type 1 receptor. Front Pharmacol 8:616

    PubMed  PubMed Central  Google Scholar 

  • Farhadpour M, Hashempour H, Talebpour Z, Nazanin A, Shushtarian MS, Gruber CW, Ghassempour A (2016) Microwave-assisted extraction of cyclotides from Viola ignobilis. Anal Biochem 497:83–89

    CAS  PubMed  Google Scholar 

  • Feyzabadi Z, Ghorbani F, Vazani Y, Zarshenas MM (2017) A critical review on phytochemistry, pharmacology of Viola odorata L. and related multipotential products in traditional Persian medicine. Phytother Res 31:1669–1675

    PubMed  Google Scholar 

  • Gautam SS, Bithel N, Kumar S, Painuly D, Singh J (2017) A new derivative of ionone from aerial parts of Viola odorata Linn. and its antibacterial role against respiratory pathogens. Clin Phytosci 2:1–5

    Google Scholar 

  • Gilding EK, Jackson MA, Poth AG, Henriques ST, Prentis PJ, Mahatmanto T, Craik DJ (2015) Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytol. https://doi.org/10.1111/nph.13789

    Article  PubMed  Google Scholar 

  • Gilding EK, Jackson MA, Poth AG, Henriques ST, Prentis PJ, Mahatmanto T, Craik DJ (2016) Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytol 210:717–730

    CAS  PubMed  Google Scholar 

  • Goransson U, Sjogren M, Svangard E, Claeson P, Bohlin L (2004) Reversible antifouling effect of the cyclotide cycloviolacin O2 against barnacles. J Nat Prod 67:1287–1290

    PubMed  Google Scholar 

  • Gould A, Camarero JA (2017) Cyclotides: overview and biotechnological applications. ChemBioChem 18:1350–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gran L (1973) Oxytocic principles of Oldenlandia affinis. Lloydia 36(2):174

    CAS  PubMed  Google Scholar 

  • Grundemann C, Koehbach J, Huber R, Gruber CW (2012) Do plant cyclotides have potential as immunosuppressant peptides? J Nat Prod 75:167–174

    PubMed  PubMed Central  Google Scholar 

  • Grundemann C, Stenberg KG, Gruber CW (2019) T20K: an immunomodulatory cyclotide on its way to the clinic. Int J Pept Res Ther 25:9–13

    Google Scholar 

  • Gustafson KR, Sowder RC, Henderson LE, Parsons IC, Kashman Y, Cardellina JH, McMahon JB, Buckheit RW Jr, Pannell LK, Boyd MR (1994) Circulins A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J Am Chem Soc 116:9337–9338

    CAS  Google Scholar 

  • Hashempour H, Koehbach J, Daly NL, Ghassempour A, Gruber CW (2013) Characterizing circular peptides in mixtures: sequence fragment assembly of cyclotides from a violet plant by MALDI-TOF/TOF mass spectrometry. Amino Acids 44:581–595

    CAS  PubMed  Google Scholar 

  • Hellinger R, Koehbach J, Soltis DE, Carpenter EJ, Wong GK, Gruber CW (2015) Peptidomics of circular cysteine-rich plant peptides: analysis of the diversity of cyclotides from Viola tricolor by transcriptome and proteome mining. J Proteome Res 14:4851–4862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann A, Burman R, Mylne JS, Karlsson G, Gullbo J, Craik DJ, Clark RJ, Goransson U (2008) The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry 69:939–995

    CAS  PubMed  Google Scholar 

  • Hernandez JF, Gagnon J, Chiche L, Nguyen TM, Andrieu JP, Heitz A, Trinh Hong T, Pham TT, Le Nguyen D (2000) Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39:5722–5730

    CAS  PubMed  Google Scholar 

  • Ireland DC, Colgrave ML, Craik DJ (2006) A novel suite of cyclotides from Viola odorata: sequence variation and the implications for structure, function and stability. Biochem J 400:1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings C, West J, Waine C, Craik D, Anderson M (2001) Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci 98:10614–10619

    CAS  PubMed  Google Scholar 

  • Karpievitch YV, Polpitiya AD, Anderson GA, Smith RD, Dabney AR (2010) Liquid chromatography mass spectrometry-based proteomics: biological and technological aspects. Ann Appl Stat 4:1797–1823

    PubMed  PubMed Central  Google Scholar 

  • Kedarisetti P, Mizianty MJ, Kaas Q, Craik DJ, Kurgan L (2014) Prediction and characterization of cyclic proteins from sequences in three domains of life. Biochimica et Biophysica Acta Proteins Proteom 1844:181–190

    CAS  Google Scholar 

  • Koehbach J, O’Brien M, Muttenthaler M, Miazzo M, Akcan M, Elliott AG, Daly NL, Harvey PJ, Arrowsmith S, Gunasekera S, Smith TJ, Wray S, Göransson U, Dawson PE, Craik DJ, Freissmuth M, Gruber CW (2013) Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design. Proc Natl Acad Sci 110:21183–21188

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindholm P, Göransson U, Johansson S, Claeson P, Gullbo J, Larsson R, Bohlin L, Backlund A (2002) Cyclotides: a novel type of cytotoxic agents 1 PL and UG contributed equally to this manuscript. Mol Cancer Ther 1:365–369

    CAS  PubMed  Google Scholar 

  • Murad AM, Souza G, JG RE, (2011) Characterisation and quantitation expression analysis of recombinant proteins in plant complex mixtures using nano UPLC mass spectrometry. Protoc Exch 1:7

    Google Scholar 

  • Narayani M, Chadha A, Srivastava S (2017) Cyclotides from the Indian medicinal plant Viola odorata (Banafsha): identification and characterization. J Nat Prod 80:1972–1980

    CAS  PubMed  Google Scholar 

  • Oguis GK, Gilding EK, Jackson MA, Craik DJ (2019) Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Front Plant Sci 10:645

    PubMed  PubMed Central  Google Scholar 

  • Park S, Yoo KO, Marcussen T, Backlund A, Jacobsson E, Rosengren KJ, Doo I, Goransson U (2017) Cyclotide evolution: insights from the analyses of their precursor sequences, structures and distribution in violets (Viola). Front Plant Sci 8:2058

    PubMed  PubMed Central  Google Scholar 

  • Parsley NC, Kirkpatrick CL, Hicks LM (2018) Identification and characterization of bioactive cyclotides in Viola odorata using PepSAVI-MS. FASEB J 32:530–542

    Google Scholar 

  • Pinto MF, Fensterseifer IC, Franco OL (2012) Plant cyclotides: an unusual protein family with multiple functions. Plant Def Biol Control 12:333–344

    Google Scholar 

  • Plan MR, Saska I, Cagauan AG, Craik DJ (2008) Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail). J Agric Food Chem 56:5237–5241

    CAS  PubMed  Google Scholar 

  • Poth AG, Mylne JS, Grassl J, Lyons RE, Millar AH, Colgrave ML, Craik DJ (2012) Cyclotides associate with leaf vasculature and are the products of a novel precursor in petunia (Solanaceae). J Biol Chem 287:27033–27046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pranting M, Loov C, Burman R, Goransson U, Andersson DI (2010) The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother 65:1964–1971

    PubMed  Google Scholar 

  • Quimbar P, Malik U, Sommerhoff CP, Kaas Q, Chan LY, Huang YH, Grundhuber M, Dunse K, Craik DJ, Anderson MA, Daly NL (2013) High-affinity cyclic peptide matriptase inhibitors. J Biol Chem 288:13885–13896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravipati AS, Poth AG, Troeira Henriques SN, Bhandari M, Huang YH, Nino J, Colgrave ML, Craik DJ (2017) Understanding the diversity and distribution of cyclotides from plants of varied genetic origin. J Nat Prod 80:1522–1530

    CAS  PubMed  Google Scholar 

  • Rosengren KJ, Daly NL, Plan MR, Waine C, Craik DJ (2003) Twists, knots, and rings in proteins structural definition of the cyclotide framework. J Biol Chem 278:8606–8616

    CAS  PubMed  Google Scholar 

  • Saska I, Gillon AD, Hatsugai N, Dietzgen RG, Hara-Nishimura I, Anderson MA, Craik DJ (2007) An asparaginyl endopeptidase mediates in vivo protein backbone cyclization. J Biol Chem 282:29721–29728

    CAS  PubMed  Google Scholar 

  • Simonsen SM, Sando L, Ireland DC, Colgrave ML, Bharathi R, Goransson U, Craik DJ (2005) A continent of plant defense peptide diversity: cyclotides in Australian Hybanthus (Violaceae). Plant Cell 17:3176–3189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slazak B, Kapusta M, Malik S, Bohdanowicz J, Kuta E, Malec P, Goransson U (2016) Immunolocalization of cyclotides in plant cells, tissues and organ supports their role in host defense. Planta 244:1029–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slazak B, Kapusta M, Stromstedt AA, Słomka A, Krychowiak M, Shariatgorji M, Andren PE, Bohdanowicz J, Kuta E, Goransson U (2018) How does the sweet violet (Viola odorata L.) fight pathogens and pests—cyclotides as a comprehensive plant host defense system. Front Plant Sci 9:1296

    PubMed  PubMed Central  Google Scholar 

  • Sternberger AL, Bowman MJ, Kruse CP, Childs KL, Ballard HE, Wyatt SE (2019) Transcriptomics identifies modules of differentially expressed genes and novel cyclotides in Viola pubescens. Front Plant Sci 10:156

    PubMed  PubMed Central  Google Scholar 

  • Svangard E, Goransson U, Smith D, Verma C, Backlund A, Bohlin L, Claeson P (2003) Primary and 3-D modelled structures of two cyclotides from Viola odorata. Phytochemistry 64:135–142

    CAS  PubMed  Google Scholar 

  • Tam JP, Lu YA, Yang JL, Chiu KW (1999) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc Natl Acad Sci 96:8913–8918

    CAS  PubMed  Google Scholar 

  • Wang CK, Kaas Q, Chiche L, Craik DJ (2007) CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering. Nucleic Acids Res 36:206–210

    Google Scholar 

  • Witherup KM, Bogusky MJ, Anderson PS, Ramjit H, Ransom RW, Wood T, Sardana M (1994) Cyclopsychotride A, a biologically active, 31-residue cyclic peptide isolated from Psychotria longipes. J Nat Prod 57:1619–1625

    CAS  PubMed  Google Scholar 

  • Yeshak MY (2012) Cyclotides: tuning parameters toward their use in drug design. Doctoral dissertation, Acta Universitatis Upsaliensis.

  • Zhang J, Liao B, Craik DJ (2009) Identification of two suites of cyclotide precursor genes from metallophyte Viola baoshanensis: cDNA sequence variation, alternative RNA splicing and potential cyclotide diversity. Gene 431:23–32

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

INSPIRE Fellowship, Department of Science and Technology, New Delhi is highly acknowledged. Authors are thankful to the School of Biotechnology, University of Jammu, Jammu for providing basic facilities. We are also thankful to Dr Manoj Khushwaha, IIIM Jammu and Dr. Sunny Sharma, School of Biotechnology for providing the necessary guidance throughout the work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

LA: methodology, software, original draft preparation; RK: validation, software; VS: methodology; NK: supervision; RM: conceptualization, resources, reviewing and editing.

Corresponding author

Correspondence to Ritu Mahajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 906 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, L., Kaur, R., Sharma, V. et al. Isolation and characterization of cyclotides from the leaves of Viola odorata L. using peptidomic and bioinformatic approach. 3 Biotech 11, 211 (2021). https://doi.org/10.1007/s13205-021-02763-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02763-2

Keywords

Navigation