Skip to main content

Advertisement

Log in

Lactobacillus animalis pZL8a: a potential probiotic isolated from pig feces for further research

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

This study aimed to screen a potential anti-diarrheal probiotic for pigs to meet the growing demand for antibiotic alternatives in livestock. Six intestinal pathogens, Escherichia coli (O157: H7) ATCC 43888, Staphylococcus aureus ATCC 6538, Listeria monocytogenes ATCC 19115, Salmonella Typhimurium ATCC 14028, Shigella boydii ATCC 9207, and Staphylococcus haemolyticus ZSY2 were employed as indicator bacteria. Our result showed that Lactobacillus animalis pZL8a isolated from pig feces had extensive and higher antibacterial activity against indicator pathogens among 9 tested strains. In addition, valuable attributes of pZL8a such as great tolerance of low pH (3.0) and bile salts (0.3%), high-level adhesion to Caco-2 cells, and similar susceptibility to the reference strain Lactobacillus rhamnosus GG (LGG) were observed. Compared with control, pZL8a supplement significantly improved the level of immunoglobulin G (IgG), immunoglobulin M (IgM), and interleukin-2 (IL-2) in mouse serum. Therefore, L. animalis pZL8a was proposed as a potential probiotic for further research and hope to reduce or replace the application of antibiotics in animal production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Argyri AA, Zoumpopoulou G, Karatzas KG, Tsakalidou E, Nychas GE, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33(2):282–291

    Article  CAS  PubMed  Google Scholar 

  • Ashraf R, Smith SC (2016) Commercial lactic acid bacteria and probiotic strains-tolerance to bile, pepsin and antibiotics. Int Food Res J 23(2):777–789

    CAS  Google Scholar 

  • Bai SP, Wu AM, Ding XM, Lei Y, Bai J, Zhang KY, Chio JS (2013) Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poult Sci 92(3):663–670

    Article  CAS  PubMed  Google Scholar 

  • Ballou MA, Davis EM, Kasl BA (2019) Nutraceuticals: an alternative strategy for the use of antimicrobials. Vet Clin North Am Food Anim Pract 35(3):507–534

    Article  PubMed  PubMed Central  Google Scholar 

  • Bendali F, Madi N, Sadoun D (2011) Beneficial effects of a strain of Lactobacillus paracasei subsp. paracasei in Staphylococcus aureus-induced intestinal and colonic injury. Int J Infect Dis 15(11):787–794

    Article  Google Scholar 

  • Bernardeau M, Vernoux JP, Gueguen M (2002) Safety and efficacy of probiotic lactobacilli in promoting growth in post-weaning Swiss mice. Int J Food Microbiol 77(1–2):19–27

    Article  PubMed  Google Scholar 

  • Bhandari SK, Opapeju FO, Krause DO, Nyachoti CM (2010) Dietary protein level and probiotic supplementation effects on piglet response to Escherichia coli K88 challenge: performance and gut microbial population. Livest Sci 133(1–3):185–188

    Article  Google Scholar 

  • Blajman JE, Astesana DM, Zimmermann JA, Rossler E, Scharpen AR, Berisvil AP, Zbrun MV, Soto LP, RosminiFrizzo MRLS (2017) Quantification of FITC-labelled probiotic Lactobacillus salivarius DSPV 001P during gastrointestinal transit in broilers. Benef Microbes 8(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Brodersen BW (2014) Bovine viral diarrhea virus infections: manifestations of infection and recent advances in understanding pathogenesis and control. Vet Pathol 51(2):453–464

    Article  CAS  PubMed  Google Scholar 

  • Caggia C, De Angelis M, Pitino I, Pino A, Randazzo CL (2015) Probiotic features of Lactobacillus strains isolated from Ragusano and Pecorino Siciliano cheeses. Food Microbiol 50:109–117

    Article  CAS  PubMed  Google Scholar 

  • Carasi P, Díaz M, Racedo SM, De Antoni G, Urdaci MC, Serradell Mde LA (2014) Safety characterization and antimicrobial properties of kefir-isolated Lactobacillus kefiri. Biomed Res Int 2014:1–7

    Article  Google Scholar 

  • Chen P, Zhang Q, Dang H, Liu X, Tian F, Zhao J, Chen Y, Zhang H, Chen W (2014) Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control 35(1):65–72

    Article  Google Scholar 

  • Cherdyntseva TA, Kotova IB, Netrusov AI (2016) The isolation, identification and analyses of Lactobacillus genus bacteria with probiotic potential. Adv Exp Med Biol 897:103–111

    Article  PubMed  Google Scholar 

  • Christensen HR, Frøkiær H, Pestka JJ (2014) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168(1):171–178

    Article  Google Scholar 

  • Clinical and Laboratory Standards Institute (2013) Performance standards for antimicrobial susceptibility testing, 23rd informational supplement M100-S23. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  • Constable PD (2004) Antimicrobial use in the treatment of calf diarrhea. J Vet Intern Med 18(1):8–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 82(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of Lactobacilli. J Appl Microbiol 23(1):130–135

    Google Scholar 

  • Dowarah R, Verma AK, Agarwal N (2017) The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: a review. Anim Nutr 3(1):1–6

    Article  PubMed  Google Scholar 

  • Dušková M, Karpíšková R (2013) Antimicrobial resistance of Lactobacilli isolated from food. Czech J Food Sci 31(1):27–32

    Article  Google Scholar 

  • Ehrenstein MR, Cook HT, Neuberger MS (2000) Defciency in serum immunoglobulin (Ig)M predisposes to development of IgG autoantibodies. J Exp Med 191(7):1253–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elghandour MMY, Tan ZL, Abu Hafsa SH, Adegbeye MJ, Greiner R, Ugbogu EA, Cedillo Monroy J, Salem AZM (2020) Saccharomyces cerevisiae as a probiotic feed additive to non- and pseudo-ruminant feeding: a review. J Appl Microbiol 128(3):658–674

    Article  CAS  PubMed  Google Scholar 

  • Famuyide IM, Aro AO, Fasina FO, Eloff JN, McGaw LJ (2019) Antibacterial activity and mode of action of acetone crude leaf extracts of under-investigated Syzygium and Eugenia (Myrtaceae) species on multidrug resistant porcine diarrhoeagenic Escherichia coli. BMC Vet Res 15(1):162

    Article  PubMed  PubMed Central  Google Scholar 

  • França EL, Calderon Ide MP, Vieira EL, Morceli G, Honorio-França AC (2012) Transfer of maternal immunity to newborns of diabetic mothers. Clin Dev Immunol 2012:928187

    Article  PubMed  PubMed Central  Google Scholar 

  • Gancarčíková S, Nemcová R, Popper M, Hrčková G, Sciranková Ľ, Maďar M, Mudroňová D, Vilček Š, Žitňan R (2019) The influence of feed-supplementation with probiotic strain Lactobacillus reuteri CCM 8617 and alginite on intestinal microenvironment of SPF mouse infected with Salmonella Typhimurium CCM 7205. Probiotics Antimicrob Proteins 11(2):493–508

    Article  PubMed  Google Scholar 

  • Goldstein EJ, Citron DM, Vreni Merriam C, Warren Y, Tyrrell KL (2000) Comparative in vitro activities of ertapenem (MK-0826) against 1,001 anaerobes isolated from human intra-abdominal infections. Antimicrob Agents Chemother 44(9):2389–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grazul H, Kanda LL, Gondek D (2016) Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes 7(2):101–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Habing G, Harris K, Schuenemann GM, Piñeiro JM, Lakritz J, Clavijo XA (2017) Lactoferrin reduces mortality in preweaned calves with diarrhea. J Dairy Sci 100(5):3940–3948

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hvistendahl M (2012) China takes aim at rampant antibiotic resistance. Science 336(6083):795

    Article  CAS  PubMed  Google Scholar 

  • Jose NM, Bunt CR, McDowell A, Chiu JZS, Hussain MA (2017) Short communication: a study of Lactobacillus isolates’ adherence to and influence on membrane integrity of human Caco-2 cells. J Dairy Sci 100(10):7891–7896

    Article  CAS  PubMed  Google Scholar 

  • Juntunen M, Kirjavainen PV, Ouwehand AC, Salminen SJ, Isolauri E (2001) Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection. Clin Diagn Lab Immunol 8(2):293–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaewnopparat S, Dangmanee N, Kaewnopparat N, Srichana T, Chulasiri M, Settharaksa S (2013) In vitro probiotic properties of Lactobacillus fermentum SK5 isolated from vagina of a healthy woman. Anaerobe 22:6–13

    Article  CAS  PubMed  Google Scholar 

  • Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G, Hildebrandt B, Müller-Bertling S, Witte W, Goossens H (2007) Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 59(5):900–912

    Article  CAS  PubMed  Google Scholar 

  • Klose V, Bayer K, Bruckbeck R, Schatzmayr G, Loibner AP (2010) In vitro antagonistic activities of animal intestinal strains against swine-associated pathogens. Vet Microbiol 144(3–4):515–521

    Article  PubMed  Google Scholar 

  • Kotzamanidis C, Kourelis A, Litopoulou-Tzanetaki E, Tzanetakis N, Yiangou M (2010) Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains. Int J Food Microbiol 140(2–3):154–163

    Article  CAS  PubMed  Google Scholar 

  • Lähteinen T, Malinen E, Koort JMK, Mertaniemi-Hannus U, Hankimo T, Karikoski N, Pakkanen S, Laine H, Sillanpää H, Söderholm H, Palva A (2010) Probiotic properties of Lactobacillus isolates originating from porcine intestine and feces. Anaerobe 16(3):293–300

    Article  PubMed  Google Scholar 

  • Lee Y, Salminen S (1995) The coming of age of probiotics. Trends Food Sci Technol 6(7):241–245

    Article  Google Scholar 

  • Lee JS, Cheng H, Damte D, Lee SJ, Kim JC, Rhee MH, Suh JW, Park SC (2013) Effects of dietary supplementation of Lactobacillus pentosus PL11 on the growth performance, immune and antioxidant systems of Japanese eel Anguilla japonica challenged with Edwardsiella tarda. Fish Shellfish Immunol 34(3):756–761

    Article  CAS  PubMed  Google Scholar 

  • Li A, Wang Y, Li Z, Qamar H, Mehmood K, Zhang L, Liu J, Zhang H, Li J (2019) Probiotics isolated from yaks improves the growth performance, antioxidant activity, and cytokines related to immunity and inflammation in mice. Microb Cell Fact 18(1):112

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodemann U, Strahlendorf J, Schierack P, Klingspor S, Aschenbach JR, Martens H (2015) Effects of the probiotic Enterococcus faecium and pathogenic Escherichia coli strains in a pig and human epithelial intestinal cell model. Scientifica 2015:235184

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra DK, Verma AK, Agarwal N, Mondal SK, Singh P (2014) Effect of dietary supplementation of probiotics on growth performance nutrients digestibility and faecal microbiology in weaned piglets. Anim Nutr Feed Technol 14(2):283–290

    Article  Google Scholar 

  • Ramalho JB, Soares MB, Spiazzi CC, Bicca DF, Soares VM, Pereira JG, da Silva WP, Sehn CP, Cibin FWS (2019) In vitro probiotic and antioxidant potential of Lactococcus lactis subsp. cremoris LL95 and its effect in mouse behaviour. Nutrients 11(4):901

    Article  CAS  PubMed Central  Google Scholar 

  • Rhouma M, Fairbrother JM, Beaudry F, Letellier A (2017) Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Vet Scand 59(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fondén R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Mattila-Sandholm T (1998) Demonstration of safety of probiotics—a review. Int J Food Microbiol 44(1–2):93–106

    Article  CAS  PubMed  Google Scholar 

  • Sedlacek HH, Gronski P, Hofstaetter T, Kanzy EJ, Schorlemmer HU, Seiler FR (1983) The biological properties of immunoglobulin G and its split products [F(ab′)2 and Fab]. Klin Wochenschr 61(15):723–736

    Article  CAS  PubMed  Google Scholar 

  • Setia A, Bhandari SK, House JD, Nyachoti CM, Krause DO (2009) Development and in vitro evaluation of an Escherichia coli probiotic able to inhibit the growth of pathogenic Escherichia coli K88. J Anim Sci 87(6):2005–2012

    Article  CAS  PubMed  Google Scholar 

  • Shin D, Chang SY, Bogere P, Won K, Choi JY, Choi YJ, Lee HK, Hur J, Park BY, Kim Y, Heo J (2019) Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS ONE 14(8):e0220843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tellez G, Latorre JD, Kuttappan VA, Hargis BM, Hernandez-Velasco X (2015) Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in turkey poults. PLoS ONE 10(4):e122390

    Article  Google Scholar 

  • Temmerman R, Pot B, Huys G, Swings J (2003) Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int J Food Microbiol 81(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Tsai Y, Cheng P, Pan T (2010) Immunomodulating activity of Lactobacillus paracasei subsp. paracasei NTU 101 in enterohemorrhagic Escherichia coli O157H7-infected mice. J Agric Food Chem 58(21):11265–11272

    Article  CAS  PubMed  Google Scholar 

  • Vlasova AN, Kandasamy S, Chattha KS, Rajashekara G, Saif LJ (2016) Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet Immunol Immunopathol 172:72–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z (2019) Antibiotic use and antibiotic resistance in food-producing animals in China. OECD Food, Agriculture and Fisheries Papers, No. 134, OECD Publishing, Paris. https://doi.org/10.1787/4adba8c1-en

  • Xu BC, Fu J, Zhu LY, Li Z, Wang YZ, Jin ML (2020) Overall assessment of antimicrobial peptides in piglets: a set of meta-analyses. Animal 14(12):2463–2471

    Article  CAS  PubMed  Google Scholar 

  • Yeo S, Lee S, Park H, Shin H, Holzapfel W, Huh CS (2016) Development of putative probiotics as feed additives: validation in a porcine-specific gastrointestinal tract model. Appl Microbiol Biotechnol 100(23):10043–10054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu HF, Wang AN, Li XJ, Qiao SY (2008) Effect of viable Lactobacillus fermentum on the growth performance, nutrient digestibility and immunity of weaned pigs. J Anim Feed Sci 17(1):61–69

    Article  Google Scholar 

  • Yuan D, Wang J, Xiao D, Li J, Liu Y, Tan B, Yin Y (2020) Eucommia ulmoides Flavones as potential alternatives to antibiotic growth promoters in a low-protein diet improve growth performance and intestinal health in weaning piglets. Animals 10(11):1998

    Article  Google Scholar 

  • Yue S, Li Z, Hu F, Picimbon JF (2020) Curing piglets from diarrhea and preparation of a healthy microbiome with Bacillus treatment for industrial animal breeding. Sci Rep 10(1):19476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49(11):6772–6782

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Li H, Lei Y, Li T, Kim S, Kim I (2016) Effect of fermented medicinal plants on growth performance, nutrient digestibility, fecal noxious gas emissions, and diarrhea score in weanling pigs. J Sci Food Agric 96(4):1269–1274

    Article  CAS  PubMed  Google Scholar 

  • Zhou JS, Pillidge CJ, Gopal PK, Gill HS (2005) Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol 98(2):211–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2018YFD0501804, 2018YFD0502305) and NBCITS (CARS-37); State Key Laboratory of Veterinary Etiological Biology Project. We thank Edanz Group Ltd. for revising the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to this work. DJ analyzed the data and wrote the paper; YW and YL designed the experiments; JW, JL, and HL performed assessment in vitro, JW and GG registered and managed experimental animals, and AL detected samples involved in an experiment in vivo. JL and HY revised the text.

Corresponding author

Correspondence to Youquan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All of the animal experiments in the study were approved by the Animal Ethics Committee of the Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences. In the present study, all experimental animals used were dealt with according to the Animal Ethic Procedures and Guidelines of the People’s Republic of China (SYXK2010-0001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, D., Wang, Y., Wang, J. et al. Lactobacillus animalis pZL8a: a potential probiotic isolated from pig feces for further research. 3 Biotech 11, 132 (2021). https://doi.org/10.1007/s13205-021-02681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02681-3

Keywords

Navigation