Skip to main content
Log in

Genome analysis of Lactobacillus plantarum subsp. plantarum KCCP11226 reveals a well-conserved C30 carotenoid biosynthetic pathway

  • Genome Reports
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Carotenoids are group of colored terpenoids with antioxidant properties and widespread in nature including in microorganisms. Lactobacillus plantarum subsp. plantarum KCCP11226 was previously isolated from kimchi, while exhibiting the production of 4,4′-diaponeurosporene as a C30 carotenoid. In this study, full genome sequencing of the strain KCCP11226 was performed. Genome analysis revealed that the dehydrosqualene synthase (crtM) and dehydrosqualene desaturase (crtN) genes, which are major genes for biosynthesis of 4,4′-diaponeurosporene, were shown to act as an operon in most L. plantarum strains, but they were uncommon in other Lactobacillus species. In vitro experiments revealed that the production of 4,4′-diaponeurosporene was greatly increased by oxidative stress. In this situation, mRNA expressions of crtN and crtM were also significantly increased. In conclusion, genome analysis of L. plantarum subsp. plantarum KCCP11226 suggested the presence of a well-conserved C30 carotenoid biosynthetic pathway that includes the crtM–crtN operon. The genomic information on L. plantarum subsp. plantarum KCCP11226 could further elucidate the functions of genes involved in isoprenoid biosynthetic pathway, especially in C30 carotenoid biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597

    Article  CAS  Google Scholar 

  • Britton G (1995) History: 175 years of carotenoid chemistry. In: Britton G, Pfander H, Liaaen-Jensen S (eds) Carotenoids, vol 1a. Birkhauser, Basel, pp 13–26

    Google Scholar 

  • Chandi GK, Gill BS (2011) Production and characterization of microbial carotenoids as an alternative to synthetic colors: a review. Int J Food Prop 14:503–513

    Article  CAS  Google Scholar 

  • Chen B, Zhang A, Li R, Mu X, He H, Chen H, Jin M (2010) Evaluation of the protective efficacy of a newly identified immunogenic protein, HP0272, of Streptococcus suis. FEMS Microbiol Lett 307:12–18

    Article  CAS  Google Scholar 

  • Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569

    Article  CAS  Google Scholar 

  • Clauditz A, Resch A, Wieland K-P, Peschel A, Götz FJI (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74:4950–4953

    Article  CAS  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147

    Article  Google Scholar 

  • Fong N, Burgess M, Barrow K, Glenn D (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756

    Article  CAS  Google Scholar 

  • Garrido-Fernández J, Maldonado-Barragán A, Caballero-Guerrero B, Hornero-Méndez D, Ruiz-Barba JL (2010) Carotenoid production in Lactobacillus plantarum. Int J Food Microbiol 140:34–39

    Article  Google Scholar 

  • Gautheret D, Lambert A (2001) Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 313:1003–1011

    Article  CAS  Google Scholar 

  • Hagi T, Kobayashi M, Nomura M (2014) Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiol Lett 350:223–230

    Article  CAS  Google Scholar 

  • Hunt M, De Silva N, Otto TD, Parkhill J, Keane JA, Harris SR (2015) Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 16:294

    Article  Google Scholar 

  • Kim M, Seo D, Park Y, Cha I, Seo M (2019) Isolation of Lactobacillus plantarum subsp. plantarum producing C30 carotenoid 4,4'-diaponeurosporene and the assessment of its antioxidant activity. J Microbiol Biotechnol 29:1925–1930

    Article  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995

    Article  CAS  Google Scholar 

  • Kristensen DM, Kannan L, Coleman MK, Wolf YI, Sorokin A, Koonin EV, Mushegian A (2010) A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics 26:1481–1487

    Article  CAS  Google Scholar 

  • Liu B-H, Lee Y-K (2000) Secondary carotenoids formation by the green alga Chlorococcum sp. J Appl Phycol 12:301–307

    Article  CAS  Google Scholar 

  • Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29:4724–4735

    Article  CAS  Google Scholar 

  • Maoka T (2019) Carotenoids as natural functional pigments. J Nat Med 74:1–16

    Article  Google Scholar 

  • Miyoshi A, Rochat T, Gratadoux J-J, Le Loir Y, Oliveira SC, Langella P, Azevedo V (2003) Oxidative stress in Lactococcus lactis. Genet Mol Res 2:348–359

    CAS  PubMed  Google Scholar 

  • Orosa M, Valero J, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085

    Article  CAS  Google Scholar 

  • Phadwal K (2005) Carotenoid biosynthetic pathway: molecular phylogenies and evolutionary behavior of crt genes in eubacteria. Gene 345:35–43

    Article  CAS  Google Scholar 

  • Siezen RJ, van Hylckama Vlieg JE (2011) Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Fact 10:S3

    Article  Google Scholar 

  • Tasara T, Stephan R (2007) Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol Lett 269:265–272

    Article  CAS  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  CAS  Google Scholar 

  • Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  CAS  Google Scholar 

  • Turpin W, Renaud C, Avallone S, Hammoumi A, Guyot J-P, Humblot C (2016) PCR of crtNM combined with analytical biochemistry: an efficient way to identify carotenoid producing lactic acid bacteria. Syst Appl Microbiol 39:115–121

    Article  CAS  Google Scholar 

  • Yatsunami R, Ando A, Yang Y, Takaichi S, Kohno M, Matsumura Y, Ikeda H, Fukui T, Nakasone K, Fujita N (2014) Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front Microbiol 5:100

    Article  Google Scholar 

  • Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G, Reinheimer J, Giraffa G (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28:1033–1040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Incheon National University Research Grant in 2017.

Author information

Authors and Affiliations

Authors

Contributions

M-JS and W-HC designed and coordinated all the experiments; MK performed in vitro experiments into C30 carotenoid production and wrote the manuscript; D-HJ analyzed the genome data; D-HS performed the genome sequencing and sequence assembly. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Won-Hyong Chung or Myung-Ji Seo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Jung, DH., Seo, DH. et al. Genome analysis of Lactobacillus plantarum subsp. plantarum KCCP11226 reveals a well-conserved C30 carotenoid biosynthetic pathway. 3 Biotech 10, 150 (2020). https://doi.org/10.1007/s13205-020-2149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-2149-y

Keywords

Navigation