Skip to main content
Log in

Genome analysis of cellulose and hemicellulose degrading Micromonospora sp. CP22

  • Genome Reports
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, a bacterial strain CP22 with ability to produce cellulase, xylanase and mannanase was isolated from the oil palm compost. Based on the 16S rRNA gene analysis, the strain was affiliated to genus Micromonospora. To further investigate genes that are related to cellulose and hemicellulose degradation, the genome of strain CP22 was sequenced, annotated and analyzed. The de novo assembled genome of strain CP22 featured a size of 5,856,203 bp with G + C content of 70.84%. Detailed genome analysis on lignocellulose degradation revealed a total of 60 genes consisting of 47 glycoside hydrolase domains and 16 carbohydrate esterase domains predicted to be involved in cellulolytic and hemicellulolytic deconstruction. Particularly, 20 genes encode for cellulases (8 endoglucanases, 3 exoglucanases and 9 β-glucosidases) and 40 genes encode for hemicellulases (15 endo-1,4-β-xylanase, 3 β-xylosidase, 3 α-arabinofuranosidase, 10 acetyl xylan esterase, 6 polysaccharide deacetylase, 1 β-mannanase, 1 β-mannosidase and 1 α-galactosidase). Thirty-two genes encoding carbohydrate-binding modules (CBM) from six different families (CBM2, CBM4, CBM6, CBM9, CBM13 and CBM22) were present in the genome of strain CP22. These CBMs were found in 27 cellulolytic and hemicellulolytic genes, indicating their potential role in enhancing the substrate-binding capability of the enzymes. CBM2 and CBM13 are the major CBMs present in cellulases and hemicellulases (xylanases and mannanases), respectively. Moreover, a GH10 xylanase was found to contain 3 CBMs (1 CBM9 and 2 CBM22) and these CBMs were reported to bind specifically to xylan. This genome-based analysis could facilitate the exploration of this strain for lignocellulosic biomass degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berlemont R, Martiny AC (2013) Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 79(5):1545–1554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E (2014) Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 31(5):1077–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biely P (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30(6):1575–1588

    CAS  PubMed  Google Scholar 

  • Boumehira AZ, El-Enshasy HA, Hacene H, Elsayed EA, Aziz R, Park EY (2016) Recent progress on the development of antibiotics from the genus Micromonospora. Biotechnol Bioproc E 21(2):199–223

    CAS  Google Scholar 

  • Dai HQ, Wang J, Xin YH, Pei G, Tang SK, Ren B, Ward A, Ruan JS, Li WJ, Zhang LX (2010) Verrucosispora sediminis sp. Nov., a cyclodipeptide producing actinomycete from deep-sea sediment. Int J Syst Evol Microbiol 60(8):1807–1812

    CAS  PubMed  Google Scholar 

  • de Menezes AB, Lockhart RJ, Cox MJ, Allison HE, McCarthy AJ (2008) Cellulose degradation by Micromonosporas recovered from freshwater lakes and classification of these actinomycetes by DNA gyrase B gene sequencing. Appl Environ Microbiol 74(22):7080–7084

    PubMed  PubMed Central  Google Scholar 

  • Feng H, Sun Y, Zhi Y, Mao L, Luo Y, Wei X, Zhou P (2015) Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1. Funct Integr Genomics 15(2):163–173

    CAS  PubMed  Google Scholar 

  • Fujimoto Z (2013) Structure and function of carbohydrate-binding module families 13 and 42 of glycoside hydrolases, comprising a β-trefoil fold. Biosci Biotechnol Biochem 77(7):1363–1371

    CAS  PubMed  Google Scholar 

  • Fujimoto Z, Kuno A, Kaneko S, Kobayashi H, Kusakabe I, Mizuno H (2002) Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase: sugar binding structure of the family 13 carbohydrate binding module. J Mol Biol 316(1):65–78

    CAS  PubMed  Google Scholar 

  • Gallagher J, Winters A, Barron N, McHale L, McHale AP (1996) Production of cellulase and β-glucosidase activity during growth of the actinomycete Micromonospora chalcae on cellulose-containing media. Biotechnol Lett 18(5):537–540

    CAS  Google Scholar 

  • Han Z, Yang J, Shang-guan F (2019) Molecular and biochemical characterization of a bimodular xylanase from Marinifilaceae bacterium strain SPP2. Front Microbiol 10:1507

    PubMed  PubMed Central  Google Scholar 

  • Hirsch AM, Valdés M (2010) Micromonospora: an important microbe for biomedicine and potentially for biocontrol and biofuels. Soil Biol Biochem 42(4):536–542

    CAS  Google Scholar 

  • Huelsenbeck JP, Crandall KA (1997) Phylogeny estimation and hypothesis testing using maximum likelihood. Annu Rev Ecol Evol Syst 28(1):437–466

    Google Scholar 

  • Juturu V, Wu JC (2014) Microbial exo-xylanases: a mini review. Appl Biochem Biotech 174(1):81–92

    CAS  Google Scholar 

  • Kataeva IA, Seidel RD, Shah A, West LT, Li XL, Ljungdahl LG (2002) The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolase CbhA promotes hydrolysis of cellulose by modifying its surface. Appl Environ Microbiol 68(9):4292–4300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komaki H, Ichikawa N, Hosoyama A, Hamada M, Harunari E, Ishikawa A, Igarashi Y (2016) Draft genome sequence of Micromonospora sp. DSW705 and distribution of biosynthetic gene clusters for depsipeptides bearing 4-amino-2, 4-pentadienoate in actinomycetes. Stand Genomic Sci 11(1):84–93

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam MQ, Mut NN, Thevarajoo S, Chen SJ, Selvaratnam C, Hussin H, Jamaluddin H, Chong CS (2018) Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech 8(2):104

    PubMed  PubMed Central  Google Scholar 

  • Lam MQ, Oates NC, Suganthi T, Tokiman L, Goh KM, MQ-Mason SJ, Bruce NC, Chong CS (2020) Genomic analysis of a lignocellulose degrading strain from the underexplored genus Meridianimaribacter. Genomics 112(1):952–960

    PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 125–175

    Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2013) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495

    PubMed  PubMed Central  Google Scholar 

  • Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:54–57

    Google Scholar 

  • Malgas S, van Dyk JS, Pletschke BI (2015) A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J Microb Biot 31(8):1167–1175

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    CAS  Google Scholar 

  • Mitchell AL et al (2018) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360

    PubMed Central  Google Scholar 

  • Parte AC (2018) LPSN–List of Prokaryotic names with Standing in Nomenclature (bacterio. net), 20 years on. Int J Syst Evol Microbiol 68(6):1825–1829

    PubMed  Google Scholar 

  • Pinheiro GL, de Azevedo-Martins AC, Albano RM, de Souza W, Frases S (2017) Comprehensive analysis of the cellulolytic system reveals its potential for deconstruction of lignocellulosic biomass in a novel Streptomyces sp. Appl Microbiol Biotechnol 101(1):301–319

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228

    CAS  PubMed  Google Scholar 

  • Swofford DL (1998) Phylogenetic analysis using parsimony. Illinois Natural History Survey, Champaign

    Google Scholar 

  • Talukdar M, Das D, Bora C, Bora TC, Boruah HP, Singh AK (2016) Complete genome sequencing and comparative analyses of broad-spectrum antimicrobial-producing Micromonospora sp. HK10. Gene 594(1):97–107

    CAS  PubMed  Google Scholar 

  • Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43(4):777–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth Á, Baka E, Luzics S, Bata-Vidács I, Nagy I, Bálint B, Herczeg R, Olasz F, Wilk T, Nagy T, Kriszt B (2017) Plant polysaccharide degrading enzyme system of Thermobifida cellulosilytica TB100T revealed by de novo genome project data. Acta Aliment 46(3):323–335

    Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    CAS  Google Scholar 

  • Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12(1):444–452

    PubMed  PubMed Central  Google Scholar 

  • Yan X, Chen JJ, Adhikari A, Yang D, Crnovcic I, Wang N, Chang CY, Rader C, Shen B (2017) Genome mining of Micromonospora yangpuensis DSM 45577 as a producer of an anthraquinone-fused enediyne. Org Lett 19(22):6192–6195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46(W1):W95–W101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Geng J, Guo Y, Liao X, Liu X, Wu R, Zheng Z, Zhang R (2015) Expression of the Thermobifida fusca xylanase Xyn11A in Pichia pastoris and its characterization. BMC Biotechnol 15(1):18–29

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially sponsored by Universiti Teknologi Malaysia under Research University Grant (GUP 2018 Tier 1) with project number 20H43. The authors would like to acknowledge palm oil mill, Johor for the permission for sample collection. Sye Jinn Chen acknowledges UTM Zamalah Scholarship from Universiti Teknologi Malaysia. Ming Quan Lam acknowledges Khazanah Watan Postgraduate (PhD) scholarship (scholar ID: 40852) from Yayasan Khazanah.

Author information

Authors and Affiliations

Authors

Contributions

SJC: carried out the experiment, analyzed the data and drafted the manuscript. MQL: designed the experiment, assisted in bioinformatics analyses and edited the manuscript. CSC: conceived of the presented idea, designed the experiment and provided expertise. AY, FAM and ST: provided expertise and edited the manuscript. All authors read, edited and approved the final manuscript.

Corresponding author

Correspondence to Chun Shiong Chong.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Genome sequence accession number: The whole-genome shotgun project of strain CP22 has been deposited at DDBJ/ENA/GenBank under the accession number VCJO00000000. The 16S rRNA gene of the strain CP22 is available at DDBJ/ENA/GenBank under accession MK934350.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 896 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S.J., Lam, M.Q., Thevarajoo, S. et al. Genome analysis of cellulose and hemicellulose degrading Micromonospora sp. CP22. 3 Biotech 10, 160 (2020). https://doi.org/10.1007/s13205-020-2148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-2148-z

Keywords

Navigation